好文档 - 专业文书写作范文服务资料分享网站

中考数学压轴题十大类型题目

天下 分享 时间: 加入收藏 我要投稿 点赞

于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形. (1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标;

(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作PH?OA,垂足为H,连接MP,MH.设点P的运动时间为t秒. ①若△MPH与矩形AOCD重合部分的面积为1,求t的值;

②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.

备用图1 备用图2

2. (2011江苏苏州)已知二次函数y?a?x2?6x?8??a?0?的图象与x轴分别交于点

A、B,与y轴交于点C.点D是抛物线的顶点.

(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物线的对称轴上,求实数a的值;

(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;

(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由. 3. (2010浙江舟山)如图,在菱形ABCD中,AB=2cm,

∠BAD=60°,E为CD边中点,点P从点A开始沿AC方向以每秒23cm的速度运动,同时,点Q从点D出发沿DB方向以每秒1cm的速度运动,当点P到达点C时,P,Q同时停止运动,设运动的时间为x秒 (1) 当点P在线段AO上运动时.

①请用含x的代数式表示OP的长度;

②若记四边形PBEQ的面积为y,求y关于x的函数关系式(不要求写出自变量的取值范围);

(2) 显然,当x=0时,四边形PBEQ即梯形ABED,请问,当P在线段AC的

其他位置时,以P,B,E,Q为顶点的四边形能否成为梯形?若能,求出

53所有满足条件的x的值;若不能,请说明理由.

4. (2011北京)如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF和以

AB为直径的半圆所组成的图形叫作图形C.

已知A(?1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.

(1)求两条射线AE,BF所在直线的距离;

(2)当一次函数y?x?b的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;

(3)已知□AMPQ(四个顶点A、M、P、Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围.

5. (2011广东珠海)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=AB=1,

BC=2.将点A折叠到CD边上,记折叠后A点对应的点为P(P与D点不重合),折痕EF只与边AD、BC相交,交点分别为E、F.过点P作PN∥BC交

AB于N、交EF于M,连结PA、PE、AM,EF与PA相交于O. (1)指出四边形PEAM的形状(不需证明); (2)记∠EPM=a,△AOM、△AMN的面积分别为S1、S2.

S11

① 求证:a=8PA2.

tan2

S1-S2

② 设AN=x,y=

a,试求出以x为自变量的函数y的解析式,并确定y的tan2取值范围.

中考数学压轴题十大类型题目

于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标;(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作PH?OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①若△MPH与矩形AOCD重合
推荐度:
点击下载文档文档为doc格式
2vh295woh68qp2012imx4yj364q3d4011k6
领取福利

微信扫码领取福利

微信扫码分享