数列专题(一) 课后作业
1. 已知?an?是首项为19,公差为?2的等差数列,Sn为?an?的前n项和.
⑴ 求通项an及Sn;
⑵ 设?bn?an?是首项为1,公比为3的等比数列,求数列?bn?的通项公式及其前n项和Tn.
2. (济南模拟)在数列?an?中,a1?1,并且对于任意n?N*,都有an?1?an. 2an?1?1?⑴ 证明:数列??为等差数列,并求?an?的通项公式;
?an?1000⑵ 设数列?anan?1?的前n项和为Tn,求使得Tn?的最小正整数n.
201113. 已知数列?an?,a1?1,以后各项由an?an?1??n≥2?给出.
n?n?1?⑴ 写出数列?an?的前5项; ⑵ 求数列?an?的通项公式.
3n?11. 【答案】⑴Sn??n?20n⑵Tn??n?20n?
2【解析】 ⑴ 因为?an?是首项为a1?19,公差d??2的等差数列.
22所以an?19?2(n?1)??2n?21,
n(n?1)Sn?19n??(?2)??n2?20n,
2⑵ 由题意bn?an?3n?1,所以bn?3n?1?an.
3n?1 Tn?Sn?(1?3??3)??n?20n?.
22. 【答案】⑴1⑵91
an?2n?1an111【解析】 ⑴ ?1,因为an?1?,所以??2,
2an?1a1an?1ann?12?1?∴数列??是首项为1,公差为2的等差数列,
?an?11∴?2n?1,从而an?. an2n?11⑵ 因为anan?1?
?2n?1??2n?1?1?11?????, 2?2n?12n?1?所以Tn?a1a2?a2a3?…?anan?1
1??1??11?1???1???1???????…????? 2??3??35?2n?12n?1???n. ?2n?1n10001000由Tn?,得x?,最小正整数n为91. ?2n?1201111
35792n?1;a3?;a4?;a5?⑵an?n?N*? ?35n2413【解析】 ⑴ a1?1;a2?a1??;
2×121517a3?a2??;a4?a3??;
3×234×3419a5?a4??.
5×4511⑵ 由an?an?1?得an?an?1??n≥2?,
n?n?1?n?n?1?3.【答案】⑴a1?1;a2?∴an??an?an?1???an?1?an?2???11??n?n?1??n?1??n?2???a3?a2???a2?a1??a1 ?11??1 3×22×11??11??1?11??1????????????????1???1 ?n?1n??n?2n?1??23??2?112n?1???1?1?2??n?N*.
nnn??