【易错题】高中必修五数学上期中第一次模拟试卷带答案(6)
一、选择题
1.在等差数列{an}中,a1?a2?a3?3,a28?a29?a30?165,则此数列前30项和等于( ) A.810
B.840
C.870
D.900
?x?y?11?0?2.设x,y满足不等式组?7x?y?5?0,若Z?ax?y的最大值为2a?9,最小值为
?3x?y?1?0?a?2,则实数a的取值范围是( ).
A.(??,?7]
B.[?3,1]
C.[1,??)
D.[?7,?3]
0?y…?2x?y?2?3.若不等式组?表示的平面区域是一个三角形,则实数a的取值范围是( )
0?x?y…??x?y?aA.?,??? C.?1,?
3?4?3??B.?0,1?
D.?0,1?U?,???
?4????4?3??4.已知等比数列{an}的各项均为正数,且a5a6?a4a7?18,则
log3a1?log3a2?log3a3?????log3a10?( )
A.10
B.12
C.1?log35
D.2?log35
5.若VABC的对边分别为a,b,c,且a?1,?B?45o,SVABC?2,则b?( ) A.5
B.25
C.41 D.52 6.若关于x的不等式x2?ax?2?0在区间?1,5?上有解,则a的取值范围是( ) A.???23?,??? ?5?B.???23?,1? 5??C.?1,???
D.???,??23? 5??7.已知{an}为等比数列,a4?a7?2,a5a6??8,则a1?a10?( ) A.7
B.5
C.?5
D.?7
8.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120km,
D在A的北偏东30°方向,且与A相距60km;C在B的北偏东30°方向,且与B相距
6013km,一架飞机从城市D出发以360km/h的速度向城市C飞行,飞行了15min,
接到命令改变航向,飞向城市B,此时飞机距离城市B有( )
A.120km B.606km C.605km D.603km
9.已知等差数列?an?的前n项为Sn,且a1?a5??14,S9??27,则使得Sn取最小值时的n为( ). A.1
B.6
C.7
D.6或7
10.若函数f(x)?x?A.3
1(x?2)在x?a处取最小值,则a等于( ) x?2C.1?2 D.4
B.1?3 11.已知锐角三角形的边长分别为1,3,a,则a的取值范围是( ) A.?8,10?
B.22,10
??C.22,10
2??D.
?10,8
?12.在?ABC中,角A,B,C的对边分别是a,b,c, cosA.直角三角形 C.等腰直角三角形
Ab?c?,则?ABC的形状为 22cB.等腰三角形或直角三角形 D.正三角形
二、填空题
13.设数列?an?n?1,n?N???满足a1?2,a2?6,且?an?2?an?1???an?1?an??2,若
?x?表示不超过x的最大整数,则[14.设x?0,201920192019??L?]?____________. a1a2a2019(x?1)(2y?1)的最小值为______.
xyy?0,x?2y?5,则15.如图,无人机在离地面高200m的A处,观测到山顶M处的仰角为15°、山脚C处的俯角为45°,已知∠MCN=60°,则山的高度MN为_________m.
?x?y?2,?16.已知实数x,y满足?x?y?2,则z?2x?y的最大值是____.
?0?y?3,?17.数列?an?满足a1?1,对任意的n?N*都有an?1?a1?an?n,则
111??L??_________. a1a2a201618.已知数列是各项均不为不等式
的等差数列,为其前项和,且满足an?S2n?1n?Nn?12???.若
???1?an?1n?n?8???1?n对任意的n?N?恒成立,则实数的取值范围是 .
19.已知数列?an?满足a1?33,an?1?an?2n,则
an的最小值为__________. n20.已知对满足4x?4y?5?4xy的任意正实数x,y,都有
x2?2xy?y2?ax?ay?1?0,则实数a的取值范围为______.
三、解答题
21.在平面四边形ABCD中,已知?ABC?3?,AB?AD,AB?1. 4
(1)若AC?5,求?ABC的面积;
(2)若sin?CAD?25,AD?4,求CD的长. 522.等差数列{an}的各项均为正数,a1?1,前n项和为Sn.等比数列{bn} 中,b1?1,且b2S2?6,b2?S3?8.
(1)求数列{an}与{bn}的通项公式; (2)求
111????. S1S2Sn23.VABC的内角A,B,C的对边分别为a,b,c,已知ccosB?bsinC?0,
cosA?cos2A.
?1?求C;
?2?若a?2,求,VABC的面积SVABC
24.设等差数列?an?的前n项和为Sn,a2?S2??5,S5??15. (1)求数列?an?的通项公式;
111????. (2)求
a1a2a2a3anan?125.在?ABC角中,角A、B、C的对边分别是a、b、c,若asinB?3bcosA.
(1)求角A;
(2)若?ABC的面积为23,a?5,求?ABC的周长.
26.已知数列?an?是等差数列,数列?bn?是公比大于零的等比数列,且a1?b1?2,
a3?b3?8.
(1)求数列?an?和?bn?的通项公式; (2)记cn?abn,求数列?cn? 的前n项和Sn.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】
数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为
10(3?165)?840 ,选B. 22.B
解析:B 【解析】 【分析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值. 【详解】
?x?y?11?0?作出不等式组?7x?y?5?0对应的平面区域(如图阴影部分),
?3x?y?1?0?目标函数z?ax?y的几何意义表示直线的纵截距,即y??ax?z,
(1)当a?0时,直线z?ax?y的斜率为正,要使得z的最大值、最小值分别在C,A处取得,
则直线z?ax?y的斜率不大于直线3x?y?1?0的斜率, 即?a?3,
??3?a?0.
(2)当a?0时,直线z?ax?y的斜率为负,易知最小值在A处取得,
要使得z的最大值在C处取得,则直线z?ax?y的斜率不小于直线x?y?11?0的斜率 ?a??1, ?0?a?1.
(3)当a?0时,显然满足题意. 综上:?3?a?1.
故选:B. 【点睛】
本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.
3.D
解析:D 【解析】 【分析】
0?y…?2x?y?2?要确定不等式组?表示的平面区域是否一个三角形,我们可以先画出
x?y…0???x?y?a0?y…??2x?y?2,再对a值进行分类讨论,找出满足条件的实数a的取值范围. ?x?y…0?【详解】
0?y…?不等式组?2x?y?2表示的平面区域如图中阴影部分所示.
?x?y…0?