小学数学六年级上册数学知识点总结
---------星耀辅导班
第一单元 位置
1、什么是数对?
——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
行号
( 列 , 行 )
↓ ↓ 竖排叫列 横排叫行
1 2 3 4 5 6 列号
4 3 2 1 0
(从左往右看)(从下往上看) (从前往后看)
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
333例如:×7表示: 求7个的和是多少? 或表示:的7倍是多少?
5552、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
3131例如:×表示: 求的是多少?
5656下载可编辑
11表示: 求9的是多少? 6611A × 表示: 求a的是多少?
669 ×
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结
果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们
的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小
不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c 1111的分数可折成(?)× a?(a?b)baa?b(四)分数乘法混合运算 1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。 2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) .专业.整理. 下载可编辑 乘法分配律:a×(b±c)=a×b±a×c (五)倒数的意义:乘积为1的两个数互为倒数。 1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数) 2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。 例如:a×b=1则a、b互为倒数。 3、求倒数的方法: ①求分数的倒数:交换分子、分母的位置。 ②求整数的倒数:整数分之1。 ③求带分数的倒数:先化成假分数,再求倒数。 ④求小数的倒数:先化成分数再求倒数。 4、1的倒数是它本身,因为1×1=1 0没有倒数,因为任何数乘0积都是0,且0不能作分母。 5、任意数a(a≠0),它的倒数为 11ba;非零整数a的倒数为;分数的倒数是。 aaab6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。 假分数的倒数小于或等于1。 带分数的倒数小于1。 (六)分数乘法应用题 ——用分数乘法解决问题 1、求一个数的几分之几是多少?(用乘法) “1”× b = ? a33 例如:求25的是多少? 列式:25×=15 5533 甲数的等于乙数,已知甲数是25,求乙数是多少? 列式:25×=15 55注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。 2、( 什么)是(什么 )的 (几)。 (几)(几) (几) ( )= ( “1” ) × .专业.整理. 下载可编辑 3例1: 已知甲数是乙数的,乙数是25,求甲数是多少? 5 33 甲数= 乙数 × 即25×=15 5533注:(1)“是”“的”字中间的量“乙数”是的单位“1”的量,即是把乙数看作单位“1”, 55把乙数平均分成5份,甲数是其中的3份。 (2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。 (3)单位“1”的量×分率=分率对应的量 3,乙数是25,求甲数是多少? 5333 甲数=乙数 ± 乙数× 即25±25×=25×(1±)=40(或10) 555例2:甲数比乙数多(少)3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。 4、什么是速度? ——速度是单位时间内行驶的路程。速度=路程÷时间 时间=路程÷速度 路程=速度×时间 ——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。 5、求甲比乙多(少)几分之几? 多:(甲-乙)÷乙 = (甲—乙) 比字后面的量差= 比后 少:(乙-甲)÷乙 第三单元 分数除法 一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。 二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。 1、被除数÷除数=被除数×除数的倒数。例3÷3=3×1=1 3÷3=3×5=5 553553.专业.整理. 下载可编辑 2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。 3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。 4、被除数与商的变化规律: ①除以大于1的数,商小于被除数:a÷b=c 当b>1时,ca (a≠0 b≠0) ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a 三、分数除法混合运算 1、混合运算用梯等式计算,等号写在第一个数字的左下角。 2、运算顺序: ①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。 ②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。 注:(a±b)÷c=a÷c±b÷c 四、比:两个数相除也叫两个数的比 1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。 注:连比如:3:4:5读作:3比4比5 2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。 例:12∶20=12=12÷20=3=0.6 12∶20读作:12比20 205 前项 比号 后项 前项 后项 比值 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。 比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。 3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。 4、化简比:化简之后结果还是一个比,不是一个数。 (1)、 用比的前项和后项同时除以它们的最大公约数。 (2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。 .专业.整理.