学习必备 欢迎下载
分析:设三、四月份平均每月增长率为x%,二月份的销售额为60(1–10%)万元,三月份的销售额为二月份的(1+x)倍,四月份的销售额又是三月份的(1+x)倍,所以四月份的销售额为二月份的(1+x)2倍,等量关系为:四月份销售额为=96万元。解:略
例5、一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税,例如存入一年期100元,到期储户纳税后所得到利息的计算公式为:
税后利息=100?2.25%?100?2.25%?20%?100?2.25%(1?20%)
已知某储户存下一笔一年期定期储蓄到期纳税后得到利息是450元,问该储户存入了多少本金?
分析:设存入x元本金,则一年期定期储蓄到期纳税后利息为2.25%(1-20%)x元,方程容易得出。 例6、某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降低成本措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。若商场平均每天要盈利1200元,每件衬衫应降价多少元?
分析:设每件衬衫应该降价x元,则每件衬衫的利润为(40-x)元,平均每天的销售量为(20+2x)件,由关系式:
总利润=每件的利润×售出商品的叫量,可列出方程 解:略
代数部分
第五章:不等式及不等式组
知识点:
一、不等式与不等式的性质
1、不等式:表示不等关系的式子。(表示不等关系的常用符号:≠,<,>)。 2、不等式的性质:
(l)不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a> b, c为实数?a+c>b+c
(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a>b, c>0?ac>bc。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a>b,c<0?ac<bc.
注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a,b的大小关系(三种):
(1)a – b >0? a>b (2)a – b=0?a=b (3)a–b<0?a<b 4、(1)a>b>0?a?b
22 (2)a>b>0?a?b
二、不等式(组)的解、解集、解不等式
1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。 不等式的所有解的集合,叫做这个不等式的解集。
不等式组中各个不等式的解集的公共部分叫做不等式组的解集。 2.求不等式(组)的解集的过程叫做解不等式(组)。 三、不等式(组)的类型及解法
学习必备 欢迎下载
1、一元一次不等式:
(l)概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。 2、一元一次不等式组:
(l)概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(2)解法:先求出各不等式的解集,再确定解集的公共部分。 注:求不等式组的解集一般借助数轴求解较方便。 例题:
方法1:利用不等式的基本性质 1、判断正误:
(1)若a>b,c为实数,则ac>bc; (2)若ac>bc,则a>b
分析:在(l)中,若c=0,则ac=bc; 在(2)中,因为”>”,所以。C≠0,否则应有ac=bc 故a>b 解:略
[规律总结]将不等式正确变形的关键是牢记不等式的三条基本性质,不等式的两边都乘以或除以含有字母的式子时,要对字母进行讨论。 方法2:特殊值法
例2、若a<b<0,那么下列各式成立的是( ) A、
2222222211aa? B、ab<0 C、?1 D、?1 abbba?1,所以选D b 分析:使用直接解法解答常常费时间,又因为答案在一般情况下成立,当然特殊情况也成立,因此采用特殊值法。
解:根据a<b<0的条件,可取a= –2,b= –l,代入检验,易知
[规律总结]此种方法常用于解选择题,学生知识有限,不能直接解答时使用特殊值法,既快,又能找到符合条件的答案。 方法3:类比法
例3、解下列一元一次不等式,并把解集在数轴上表示出来。 (1)8–2(x+2)<4x–2;(2)1?x?1x?1 ?2?23 分析:解一元一次不等式的步骤与解一元一次方程类似,主要步骤有去分母,去括号、
移项、合并同类项,把系数化成1,需要注意的是,不等式的两边同时乘以或除以同一个负数,不等号要改变方向。解:略
[规律总结]解一元一次不等式与解一元一次方程的步骤类似,但要注意当不等式的两边都乘以或除以同一个负数时,不等号的方向必须改变,类比法解题,使学生容易理解新知识和掌握新知识。 方法4:数形结合法
学习必备 欢迎下载
?2(x?8)?10?4(x?3)? 例4、求不等式组:?x?16x?7的非负整数解
??1?3?2 分析:要求一个不等式组的非负整数解,就应先求出不等式组的解集,再从解集中找
出其中的非负整数解。解:略 方法5:逆向思考法
例5、已知关于x的不等式(a?2)x?10?a的解集是x>3,求a的值。 分析:因为关于x的不等式的解集为x>3,与原不等式的不等号同向,所以有a – 2 >0,即原不等式的解集为x?10?a10?a,?3解此方程求出a的值。解:略 a?2a?2 [规律总结]此题先解字母不等式,后着眼已知的解集,探求成立的条件,此种类型题都
采用逆向思考法来解。
代数部分
第六章:函数及其图像
知识点:
一、平面直角坐标系
1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。在平面直角坐标系内的点和有序实数对之间建立了—一对应的关系。 2、不同位置点的坐标的特征:
(1)各象限内点的坐标有如下特征: 点P(x, y)在第一象限?x >0,y>0; 点P(x, y)在第二象限?x<0,y>0; 点P(x, y)在第三象限?x<0,y<0; 点P(x, y)在第四象限?x>0,y<0。 (2)坐标轴上的点有如下特征:
点P(x, y)在x轴上?y为0,x为任意实数。 点P(x,y)在y轴上?x为0,y为任意实数。 3.点P(x, y)坐标的几何意义: (1)点P(x, y)到x轴的距离是| y |; (2)点P(x, y)到y袖的距离是| x |; (3)点P(x, y)到原点的距离是x?y 4.关于坐标轴、原点对称的点的坐标的特征: (1)点P(a, b)关于x轴的对称点是P1(a,?b); (2)点P(a, b)关于x轴的对称点是P2(?a,b); (3)点P(a, b)关于原点的对称点是P3(?a,?b);
二、函数的概念
1、常量和变量:在某一变化过程中可以取不同数值的量叫做变量;保持数值不变的量叫做常量。
2、函数:一般地,设在某一变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。 (1)自变量取值范围的确是:
①解析式是只含有一个自变量的整式的函数,自变量取值范围是全体实数。
22学习必备 欢迎下载
②解析式是只含有一个自变量的分式的函数,自变量取值范围是使分母不为0的实数。 ③解析式是只含有一个自变量的偶次根式的函数,自变量取值范围是使被开方数非负的实数。
注意:在确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有意义。
(2)函数值:给自变量在取值范围内的一个值所求得的函数的对应值。 (3)函数的表示方法:①解析法;②列表法;③图像法
(4)由函数的解析式作函数的图像,一般步骤是:①列表;②描点;③连线 三、几种特殊的函数 1、一次函数
直线位置与k,b的关系:
(1)k>0直线向上的方向与x轴的正方向所形成的夹角为锐角; (2)k<0直线向上的方向与x轴的正方向所形成的夹角为钝角; (3)b>0直线与y轴交点在x轴的上方; (4)b=0直线过原点;
(5)b<0直线与y轴交点在x轴的下方; 2、二次函数
学习必备 欢迎下载
抛物线位置与a,b,c的关系:
(1)a决定抛物线的开口方向??a?0?开口向上?a?0?开口向下 (2)c决定抛物线与y轴交点的位置:
c>0?图像与y轴交点在x轴上方;c=0?图像过原点;c<0?图像与y轴交点在x轴下方;
(3)a,b决定抛物线对称轴的位置:a,b同号,对称轴在y轴左侧;b=0,对称轴是y轴; a,b异号。对称轴在y轴右侧;
3、反比例函数:
4、正比例函数与反比例函数的对照表: