好文档 - 专业文书写作范文服务资料分享网站

排列组合经典练习答案

天下 分享 时间: 加入收藏 我要投稿 点赞

排列与组合习题

1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( )

A.40

B.50 C.60

C26=15

D.70

C36种不同的分法;两组各3人共有2=10种不

A2

[解析] 先分组再排列,一组2人一组4人有

同的分法,所以乘车方法数为25×2=50,故选B.

2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )

A.36种

B.48种 C.72种

D.96种

[解析] 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从

2

而共A33A4=72种排法,故选C.

3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )

A.6个

B.9个 C.18个

D.36个

[解析] 注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数

2字共有C1即1231,1232,1233,而每种选择有A2所以共有3×6=18(种)3=3(种)选法,2×C3=6(种)排法,

情况,即这样的四位数有18个.

4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )

A.2人或3人 B.3人或4人 C.3人 D.4人

1 [解析] 设男生有n人,则女生有(8-n)人,由题意可得C2nC8-n=30,解得n=5或n=6,代入验

证,可知女生为2人或3人.

5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )

A.45种

B.36种 C.28种

D.25种

[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.

6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )

A.24种

B.36种 C.38种

D.108种

[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去

2

共有C13A2种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各24人,故分组后两人所去的部门就已确定,故第三步共有C1由分步乘法计数原理共有2C13种方法,3A21C3=36(种).

7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )

A.33

B.34 C.35

D.36

[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C1A32·3=12个;

3

②所得空间直角坐标系中的点的坐标中含有1个1的有C1A32·3+A3=18个;

③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个. 故共有符合条件的点的个数为12+18+3=33个,故选A.

8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )

A.72

B.96 C.108

D.144

223

[解析] 分两类:若1与3相邻,有A2C1A32·3A2A3=72(个),若1与3不相邻有A3·3=36(个)

故共有72+36=108个.

9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )

A.50种

B.60种 C.120种

D.210种

[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排

1方法有A2A25种,按照分步乘法计数原理可知共有不同的安排方法C6·5=120种,故选C.

10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)

[解析] 先安排甲、乙两人在后5天值班,有A2其余5人再进行排列,有A55=20(种)排法,5=120(种)排法,所以共有20×120=2400(种)安排方法.

11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)

[解析] 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C4C2C39·5·3=1260(种)排法.

12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).

[解析] 先将6名志愿者分为4

2C26C4组,共有2种分法,再将A2

4组人员分到4个不同场馆去,共有A44

C2C26·4种分法,故所有分配方案有:2·A44=1 080种. A2

13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).

[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.

14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有

(A)12种 (B)18种 (C)36种 (D)54种 【解析】标号1,2的卡片放入同一封信有

种方法;其他四封信放入两个信封,每个信封两个有

种方法,共有种,故选B.

15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有

A. 504种 B. 960种 C. 1008种 D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有2?A2A4A4种方法

24113甲乙排中间,丙排7号或不排7号,共有4A2(A4?A3A3A3)种方法

214故共有1008种不同的排法

16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A)72 (B)96 (C) 108 (D)144 解析:先选一个偶数字排个位,有3种选法

w_w_w.k*s 5*u.c o*m

w_w_w.k*s 5*u.c o*m

①若5在十位或十万位,则1、3有三个位置可排,3A3A2=24个

②若5排在百位、千位或万位,则1、3只有两个位置可排,共3A2A2=12个

算上个位偶数字的排法,共计3(24+12)=108个 答案:C

17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为

A.10 B.11 C.12 D.15

2222

18. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是 A.152 B.126 C.90 D.54

3?18;若有1人从事司机工作,则方【解析】分类讨论:若有2人从事司机工作,则方案有C32?A3123?C4?A3?108种,所以共有18+108=126种,故B正确 案有C319. 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( D ) (A)150种 (B)180种 (C)300种 (D)345种

112解: 分两类(1) 甲组中选出一名女生有C5?C3?C6?225种选法;

211 (2) 乙组中选出一名女生有C5?C6?C2?120种选法.故共有345种选法.选D

20. 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为

A.18 B.24 C.30 D.36

【解析】用间接法解答:四名学生中有两名学生分在一个班的种数是C42,顺序有A33种,而甲乙被

233A3?A3?30 分在同一个班的有A33种,所以种数是C421. 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相

邻,则不同排法的种数是

A. 60 B. 48 C. 42 D. 36

22【解析】解法一、从3名女生中任取2人“捆”在一起记作A,(A共有C3A2?6种不同排法),

剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。

22解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有C3A2?6种不同排法),

剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:

第一类:女生A、B在两端,男生甲、乙在中间,共有6A2A2=24种排法;

第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有6A2=12种排法

第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。 此时共有6A2=12种排法

三类之和为24+12+12=48种。

22. 从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位 [ C]

2222A 85 B 56 C 49 D 28

12【解析】解析由条件可分为两类:一类是甲乙两人只去一个的选法有:C2?C7?42,另一类是甲

乙都去的选法有C2?C7=7,所以共有42+7=49,即选C项。

23. 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是

A. 360 B. 188 C. 216 D. 96

3222解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有A3C3A4A2?332种,其中12222男生甲站两端的有A2A2C3A3A2?144,符合条件的排法故共有188 222112222解析2:由题意有2A2?(C3?A2)?C2?C3?A2?(C3?A2)?A4?188,选B。

2124. 12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为( )

A.

1 55B.

3 55C.

1 4D.

1 344C12C48C4解析因为将12个组分成4个组的分法有种,而3个强队恰好被分在同一组分法有

A33144C333144244433C9C8C4,故个强队恰好被分在同一组的概率为。 CCCCACCCA=9984212843255A225. 甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).

【解析】对于7个台阶上每一个只站一人,则有A7种;若有一个台阶有2人,另一个是1人,则共有C3A7种,因此共有不同的站法种数是336种.

31226. 锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相

同。从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为( )

排列组合经典练习答案

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()A.40B.50C.60C26=15D.70C36种不同的分法;两组各3人共有2=10种不A2[解析]先分组再排列,一组2
推荐度:
点击下载文档文档为doc格式
2t7b10pe9l0weks4q3af
领取福利

微信扫码领取福利

微信扫码分享