课时分层作业(二十一) 三角函数的积化和差
与和差化积
(建议用时:60分钟)
[合格基础练]
一、选择题
1.cos 15° sin 105°=( ) A.
31
+ 42
B.
31- 42
3
C.2+1 3D.2-1
11
A [cos 15°sin 105°=2 [sin(15°+105°)-sin(15°-105°)]=2 [sin 120°-sin(-90°)]13131=2 ×2+2 ×1=4+2 .]
2.sin 20°+sin 40°-sin 80°的值为( ) A.0 B.
31
C. D.1 22
A [原式=2sin 30°cos 10°-sin 80°=cos 10°-sin 80°=sin 80°-sin 80°=0.] x?x?
3.函数f(x)=2sin2 sin?α-2?的最大值等于( )
??α
A.2sin22 α
C.2cos 22
α
B.-2sin22 α
D.-2cos 22
x?x?
A [f(x)=2sin sin?α-2?=-[cos α-cos(x-α)]=cos(x-α)-cos α.
2??当cos(x-α)=1时,f(x)取得最大值1-cos α α
=2sin22 .]
4.将cos 2x-sin2y化为积的形式,结果是( ) A.-sin(x+y)sin(x-y) C.sin(x+y)cos(x-y)
B.cos(x+y)cos(x-y) D.-cos(x+y)sin(x-y)
1+cos 2x1-cos 2y1
B [cosx-siny=-=2(cos 2x+cos 2y)=cos(x+y)cos(x-y).]
22
2
2
12
5.若cos xcos y+sin xsin y=2,sin 2x+sin 2y=3,则sin(x+y)=( ) 2
A.3 1C .3
2B.-3 1D.-3
112
A [∵cos xcos y+sin xsin y=2,∴cosx-y=2,∵sin 2x+sin 2y=3,2
∴2sinx+ycosx-y=3,
()
(
)()
122
∴2sinx+y·=,∴sin(x+y)=
233,故选A.]
()
二、填空题
6.cos 2α-cos 3α化为积的形式为________.
2α+3α2α-3α5αα5α?α?2sin2 sin2 [cos 2α-cos 3α=-2sin2 ·sin2=-2sin2 sin?-2?=
??2sin
5αα
sin .] 22
?π??π?7.sin?4+α?·cos ?4+β?化为和差的结果是________.
????
111π11 cos(α+β)+ sin(α-β) [原式=sin+α+β+sin(α-β)= cos(α+β)+222222 sin(α-β).]
sin 35°+sin 25°8.=________. cos 35°+cos 25°
35°+25°35°-25°
2sincos 223cos 5°3
== .]
3 [原式=35°+25°35°-25°3cos 5°3
2cos cos
22三、解答题
9.求下列各式的值: (1)sin 54°-sin 18°;
(2)cos 146°+cos 94°+2cos 47°cos 73°.
[解](1)sin 54°-sin 18°=2cos 36°sin 18°
2sin 18°cos 18°cos 36°2sin 36°cos 36°sin 72°cos 18°1=2·=2cos 18°=2cos 18°=2cos 18°=2 .
2cos 18°(2)cos 146°+cos 94°+2cos 47°cos 73° 1=2cos 120°cos 26°+2×2(cos 120°+cos 26°) ?1??1?=2×?-2?×cos 26°+?-2?+cos 26°
????1?1?=-cos 26°+?-2?+cos 26°=-2 .
??
10.在△ABC中,若B=30°,求cos Asin C的取值范围.
11
[解] 由题意,得cos Asin C=2[sin(A+C)-sin(A-C)]=2[sin(π-B)-sin(A-C)]11
=4-2sin(A-C).
111
∵B=30°,∴-150°<A-C<150°,∴-1≤sin(A-C)≤1,∴-4≤4-2sin(A-3C)≤4.
?13?∴cos Asin C的取值范围是?-4,4?.
??
[等级过关练]
1.cos 40°+cos 60°+cos 80°+cos 160°=( ) 1
A.2 3C.2 1B.-2 3
D.-2
11
A [cos 60°+cos 80°+cos 40°+cos 160°=2+cos 80°+2cos 100°cos 60°=2+cos 180°-cos 80°=2 .]
2π1
2.已知α-β=3,且cos α+cos β=3,则cos(α+β)=________. 7
A.-9
7B.9
9
C.7 9D.-7
α+βα-βα+βπ
A [cos α+cos β=2cos 2cos 2=2cos 3cos 2 α+β1=cos 2=3,
α+β17
∴cos(α+β)=2cos 2-1=2×9-1=-9.] 2
?π??2π?3.函数y=cos?x+3?cos?x+3?的最大值是________.
????31??π??
?cos?2x+π?+cos?-3?? [由题意知,y=
42????1π11
=(-cos 2x+cos )=-cos 2x, 23423因为-1≤cos 2x≤1,所以ymax=4.] 1cos 80°4.sin 40°+sin 80°=________.
1cos 80°2cos 40°cos 80°3 [sin40°+sin80°=2sin40°+
cos 40°sin80° cos 40°+?cos 40°+cos 80°?= sin80°
cos 40°+2cos 60°cos 20°cos 40°+cos 20°==
sin80°cos 10°2cos 30°cos 10°
==3.] cos 10°=2cos 30°5xsin21
5.已知f(x)=-+,x∈(0,π).
2x
2sin2(1)将f(x)表示成cos x的多项式; (2)求f(x)的最小值.
5xxsin2-sin2x2sin2
3x2cos 2sin x=x 2sin2
[解](1)f(x)=
3xx
=2cos 2cos 2=cos 2x+cos x=2cos2x+cos x-1.
1?2919?
(2)∵f(x)=2?cos x+4?-8且-1