好文档 - 专业文书写作范文服务资料分享网站

2024-2024高中必修五数学上期中第一次模拟试题(含答案)(17)

天下 分享 时间: 加入收藏 我要投稿 点赞

2024-2024高中必修五数学上期中第一次模拟试题(含答案)(17)

一、选择题

1.已知首项为正数的等差数列?an?的前n项和为Sn,若a1008和a1009是方程

x2?2017x?2024?0的两根,则使Sn?0成立的正整数n的最大值是( )

A.1008

B.1009

C.2016

D.2017

a20??1,且数列?an?的前n项和Sn有最大值,则Sn的最2.已知?an?为等差数列,若a19小正值为( ) A.S1

B.S19

C.S20

D.S37

n3.已知数列{an}满足a1?1,an?1?an?2,则a10?( )

A.1024 B.2048 C.1023 D.2047

?x?3y?3,?4.设x,y满足约束条件?x?y?1,则z=x+y的最大值为( )

?y?0,?A.0

B.1

C.2

D.3

5.若VABC的对边分别为a,b,c,且a?1,?B?45o,SVABC?2,则b?( ) A.5

B.25

C.41 D.52 6.已知幂函数y?f(x)过点(4,2),令an?f(n?1)?f(n),n?N?,记数列?前n项和为Sn,则Sn?10时,n的值是( ) A.10

B.120

C.130

D.140

?1??的a?n?7.已知等比数列?an?的各项均为正数,若log3a1?log3a2???log3a12?12,则a6a7=( ) A.1

B.3

C.6

D.9

18.在数列?an?中,a1?2,an?1?an?ln(1?),则an?

nA.2?lnn

B.2?(n?1)lnn

C.2?nlnn

D.1?n?lnn

vv1uuuuuuvuuuvuuu9.已知AB?AC,AB?,AC?t,若P点是VABC所在平面内一点,且

tuuuvuuuvuuuvAB4ACuuuvuuuvAP?uuuv?uuuv,则PB·PC的最大值等于( ). ABACA.13

B.15

C.19

D.21

10.若0?a?1,b?c?1,则( ) A.()?1

bcaB.

c?ac? b?abC.ca?1?ba?1 D.logca?logba

11.在?ABC中,角A,B,C所对的边分别是a,b,c,A?60?,a?43,b?4,则B?( ) A.B?30?或B?150? C.B?30?

B.B?150? D.B?60?

12.两个等差数列?an?和?bn?,其前n项和分别为Sn,Tn,且

Sn7n?2?,则Tnn?3a2?a20?( )

b7?b15A.

4 9B.

37 8C.

79 14D.

149 24二、填空题

13.已知数列?an?是等差数列,若a4?a7?a10?17,

a4?a5?a6?L?a12?a13?a14?77,且ak?13,则k?_________.

14.在△ABC中,a?2,c?4,且3sinA?2sinB,则cosC=____. 15.已知各项为正数的等比数列?an?满足a7?a6?2a5,若存在两项am,an使得

14?的最小值为__________. mnax?y?1,16.设a>0,b>0. 若关于x,y的方程组{无解,则a?b的取值范围是 .

x?by?1am?an?22a1,则

17.若原点和点(?1,2024)在直线x?y?a?0的同侧,则a的取值范围是________(用集合表示).

18.设等差数列{an}的前n项和为Sn,若S3?9,S6?36,则a7?a8?a9等于______. 19.已知数列?an?的通项an?1,则其前15项的和等于_______.

n?1?n?x?y?2?0?20.已知x,y满足条件?x?2y?2?0,若目标函数z=-ax+y取得最大值的最优解不唯

?2x?y?2?0?一,则实数a的值为__________.

三、解答题

21.在VABC中,cosA??53,cosB?. 135(1)求sinC的值;

(2)设BC?5,求VABC的面积.

22.已知{an}是等差数列,{bn}是各项均为正数的等比数列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4.

(1)求数列{an},{bn}的通项公式;

(2)设cn=anbn,求数列{cn}的前n项和Tn.

23.已知等差数列?an?的前n项和为Sn,且a2?11,S7?161. (1)求数列?an?的通项公式; (2)若bn?1,求数列?bn?的前n项和Tn. anan?124.VABC中,内角A,B,C的对边分别为a,b,c.已知acosC?ccosA?a. (1)求证:A?B; (2)若A??6,VABC的面积为3,求VABC的周长.

25.已知?an?为等差数列,前n项和为Snn?N?*?,?b?是首项为2的等比数列,且公

n比大于0,b2?b3?12,b3?a4?2a1,S11?11b4. (1)求?an?和?bn?的通项公式; (2)求数列?a2n?b2n?1?的前n项和.

26.等差数列?an?中,a2?4,a4?a7?15. (1)求数列?an?的通项公式; (2)设bn?2an?2?n,求b1?b2?b3?????b10的值.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.C 解析:C 【解析】

依题意知a1008?a1009?2017?0,a1008a1009??2024?0,Q数列的首项为正数,

?a1008?0,a10090,?S2016?S2017?a1?a2016??2016??a1008?a1009??20162210090,

a1?a2017??2017???a2?2017?0,?使Sn?0成立的正整数n的最大值是

2016,故选C.

2.D

解析:D 【解析】 【分析】

由已知条件判断出公差d?0,对出结果. 【详解】

a20??1进行化简,运用等差数列的性质进行判断,求a19a20?a19a20??1?0, 已知?an?为等差数列,若,则a19a19由数列?an?的前n项和Sn有最大值,可得d?0,

?a19?0,a20?a19?0,a20?0,S37?37a19?0, ?a1?a38?a20?a19?0,S38?0,

则Sn的最小正值为S37 故选D 【点睛】

本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.

3.C

解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】

nn因为an?1?an?2,所以an?1?an?2,

1?210因此a10?a10?a9?a9?a8?L?a2?a1?a1?2?2?L?2?1??1023,选C.

1?2【点睛】

本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.

984.D

解析:D 【解析】

如图,作出不等式组表示的可行域,则目标函数z?x?y经过A(3,0)时z取得最大值,故

zmax?3?0?3,故选D.

点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.

5.A

解析:A 【解析】

在?ABC中,a?1,?B?450,可得S?ABC?由余弦定理可得:b?221?1?csin45??2,解得c?42. 22a?c?2accosB?1?42??2?2?1?42?2?5. 26.B

解析:B 【解析】 【分析】

根据幂函数所过点求得幂函数解析式,由此求得an的表达式,利用裂项求和法求得Sn的表达式,解方程Sn?10求得n的值. 【详解】

?设幂函数为f?x??x,将?4,2?代入得4?2,???1,所以f?x??x.所以21an?n?1?n,所以?n?1?n,故anSn?n?1?n?n?n?1?L?2?1?n?1?1,由Sn?n?1?1?10解得n?120,故选B. 【点睛】

本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.

7.D

解析:D 【解析】

2024-2024高中必修五数学上期中第一次模拟试题(含答案)(17)

2024-2024高中必修五数学上期中第一次模拟试题(含答案)(17)一、选择题1.已知首项为正数的等差数列?an?的前n项和为Sn,若a1008和a1009是方程x2?2017x?2024?0的两根,则使Sn?0成立的正整数n的最大值是()A.1008B.1009C.2016
推荐度:
点击下载文档文档为doc格式
2srrs4nljn5136q5t3t485bn78ar7y00cj0
领取福利

微信扫码领取福利

微信扫码分享