(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以
cm/s的速度沿BD向点D运动,运动时间为t s.
①设BF=y cm,求y关于t的函数表达式; ②当BN=2AN时,连接FN,求FN的长.
24.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x轴,垂足为C. (1)求抛物线的表达式;
(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;
(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.
6
2017年山东省菏泽市中考数学试卷
参考答案与试题解析
一、选择题(共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一个选项是正确的)
1.(3分)()﹣2的相反数是( ) A.9
B.﹣9 C. D.﹣
【分析】先将原数求出,然后再求该数的相反数. 【解答】解:原数=32=9, ∴9的相反数为:﹣9; 故选(B)
【点评】本题考查负整数指数幂的意义,解题的关键正确理解负整数指数幂的意义,本题属于基础题型.
2.(3分)生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是( ) A.3.2×107 B.3.2×108 C.3.2×10﹣7
D.3.2×10﹣8
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:0.00000032=3.2×10﹣7; 故选:C.
【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
3.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )
7
A. B. C. D.
【分析】根据图形、找出几何体的左视图与俯视图,判断即可.
【解答】解:A、左视图是两个正方形,俯视图是三个正方形,不符合题意; B、左视图与俯视图不同,不符合题意; C、左视图与俯视图相同,符合题意; D左视图与俯视图不同,不符合题意, 故选:C.
【点评】此题主要考查了由几何体判断三视图,考查了空间想象能力,解答此题的关键是要明确:由几何体想象三视图的形状,应分别根据几何体的前面、上面和左侧面的形状想象主视图、俯视图和左视图.
4.(3分)某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):﹣7,﹣4,﹣2,1,﹣2,2.关于这组数据,下列结论不正确的是( ) A.平均数是﹣2
B.中位数是﹣2
C.众数是﹣2 D.方差是7
【分析】根据平均数、中位数、众数及方差的定义,依次计算各选项即可作出判断.
【解答】解:A、平均数是﹣2,结论正确,故A不符合题意; B、中位数是﹣2,结论正确,故B不符合题意; C、众数是﹣2,结论正确,故C不符合题意; D、方差是9,结论错误,故D符合题意; 故选:D.
【点评】本题考查了平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.
5.(3分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )
8
A.55° B.60° C.65° D.70°
【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.
【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C, ∴AC=A′C,
∴△ACA′是等腰直角三角形, ∴∠CA′A=45°,∠CA′B′=20°=∠BAC ∴∠BAA′=180°﹣70°﹣45°=65°, 故选:C.
【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
6.(3分)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是( )
A.x>2 B.x<2 C.x>﹣1 D.x<﹣1
【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.
9
【解答】解:∵函数y1=﹣2x过点A(m,2), ∴﹣2m=2, 解得:m=﹣1, ∴A(﹣1,2),
∴不等式﹣2x>ax+3的解集为x<﹣1. 故选D.
【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.
7.(3分)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是( )
A.(0,) B.(0,) C.(0,2) D.(0,)
【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.
【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E, 则此时,△ADE的周长最小, ∵四边形ABOC是矩形, ∴AC∥OB,AC=OB, ∵A的坐标为(﹣4,5), ∴A′(4,5),B(﹣4,0), ∵D是OB的中点, ∴D(﹣2,0),
设直线DA′的解析式为y=kx+b,
10