21.(本题12分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.票数结果统计如图一:
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:
测试项目 测试测试测试成 成绩成绩/绩/分 /分 分 甲 乙 丙 笔试 92 90 95 面试 85 95 80 图二是某同学根据上表绘制的一个不完全的条形图. 请你根据以上信息解答下列问题: (1)补全图一和图二;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2∶5∶3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
22.(本题12分)如图,已知直线AB与x轴交于点C,与双曲k20
线y=交于A(3,)、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴
x3且与y轴交于点E.
(1)求点B的坐标及直线AB的解析式; (2)判断四边形CBED的形状,并说明理由. 23、(本题12分)如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与BC交于点E,F在DA的延长线上,且AF=AE. (1)试判断BF与⊙O的位置关系,并说明理由; (2)若⊙O的半径为2.∠F=60,求弓形AB的面积
OEDCAFBk24.(本题12分)已知双曲线y=与抛物线y=ax2+bx+c交于
xA(2,3)、B(m,2)、c(-3,n)三点.
(1)求双曲线与抛物线的解析式;
(2)在平面直角坐标系中描出点A、点B、点C,并求出△ABC的面积.
25.(本题共2个小题,每题7分,共14分) (1)观察下列算式:
① 1 × 3-22=3-4=-1 ② 2 × 4-32=8-9=-1 ③ 3 × 5-42=15-16=-1 ④ __________________________ ……
(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
(2)如图,在直角坐标系中,O为坐标原点. 已知反比例函数yk=(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOBx1
的面积为.
2
(1)求k和m的值;
k(2)点C(x,y)在反比例函数y=的图象上,求当1≤x≤3时函
x数值y的取值范围;
k(3)过原点O的直线l与反比例函数y=的图象交于P、Q两点,
x试根据图象直接写出线段PQ长度的最小值.
2018-2019年最新泰安一中自主招生考试
数学模拟精品试卷答案
(第一套)
1.答案 B
解析 据绝对值的意义,一个数的绝对值是一个非负数,|a|≥0.
2.C 3.答案 C
解析 □=3a2b÷3ab=a. 4.答案 A
解析 x(x-2)=0,x=0或x-2=0,x1=0,x2=2,方程有两个不相等的实数根.
5.C 6.A 7.答案 B 1 ??x+1>0, 解析 观察数轴,可知-1 ?3-x>0? 的解集为- 8.答案 C 解析 当0≤x≤3时,观察图象,可得图象上最低点(1,-1),最高点(3,3),函数有最小值-1,最大值3. 9.答案 D 解析 在Rt△OAB中,∠OAB=90°,所以OB=12+22=5 10.答案 A 解析 y=-x2+4x=-(x-2)2+4,抛物线开口向下,函数有最大值4. 11.D 12.答案 D