2019-2020年高中数学第一章三角函数1.4正弦函数和余弦函数的定义与
诱导公式2自我小测北师大版必修
1.sin 570°的值是( )
1133A. B.- C. D.- 22222.sin 95°+cos 175°的值为( )
A.sin 5° B.cos 5° C.0 D.2sin 5° 3.设A,B,C是△ABC的三个内角,下列关系恒成立的是( ) A.cos(A+B)=cos C B.sin(A+B)=sin C C.sin?
?A+B?=sinC D.sin?A+B?=-cosC
??2?22?2???
3?π??3π?4.已知sin?+α?=,则sin?-α?的值为( ) ?4?2?4?1133
A. B.- C. D.- 22225.下列三角函数:
4?π?π????①sin?nπ+π?;②cos?2nπ+?;③sin?2nπ+?;
3?6?3????π?π???④cos?(2n+1)π+?;⑤sin?(2n+1)π-?(n∈Z).
6?3???π
其中函数值与sin的值相同的是( )
3A.①② B.①③④ C.②③⑤ D.①③⑤
?π?6.若函数y=sin x在区间?-,a?上是增加的,则a的取值范围是__________. ?2?
7.化简求值:
1+2sin 290°cos 430°
=__________.
sin 250°+cos 790°
sin(-2π-θ)cos(6π-θ)
8.化简:=__________.
cos(θ-π)sin(5π+θ)
??-cos πx,x>0,
9.已知函数f(x)=?
?f(x+1)+1,x≤0,?
?4??4?则f??+f?-?的值为________.
?3??3?
10.利用单位圆,求满足下列条件的角α的集合: 113
(1)sin α=; (2)sin α≤-; (3)sin α≥.
222
sin(π-α)+5cos(2π-α)
11.已知sin(α-3π)=2cos(α-4π),求的值.
3π??2sin?-α?-sin(-α)?2?12.已知f(n)=sin
nπ
4
,n∈Z.
(1)求证:f(1)+f(2)+…+f(8)=f(9)+f(10)+…+f(16); (2)求f(1)+f(2)+…+f(2 014)的值.
参考答案
1.解析:sin 570°=sin(360°+210°)=sin 210°=sin(180°+30°)=-sin 30°1=-.
2
答案:B
2.解析:sin 95°+cos 175°=sin(90°+5°)+cos(180°-5°)=cos 5°-cos 5°=0.
答案:C
3.解析:∵A+B+C=π,∴∴A+B=π-C,
A+B+Cπ
2
=2
,
A+Bπ
2=
-,
22
C∴cos(A+B)=cos(π-C)=-cos C, sin(A+B)=sin(π-C)=sin C, sin?
?A+B?=sin?π-C?=cosC,
??22?2?2???
故A,C,D错误,B正确. 答案:B
?π??3π??3π???π??4.解析:∵?+α?+?-α?=π,∴sin?-α?=sin?π-?+α??=
?4??4??4???4??
3?π?sin?+α?=. ?4?2
答案:C
4?π?π??5.解析:当n为奇数时,sin?nπ+π?=sin?(n+1)π+?=sin;当n为偶数时,
3?3?3??4?π?π?πππ???sin?nπ+π?=sin?π+?=-sin,故①错;cos?2nπ+?=cos=sin,故②正3?3?6?363???π?π?π?ππ???确;sin?2nπ+?=sin,故③正确;cos?(2n+1)π+?=cos?π+?=-cos=-3?6?6?36???π?π?ππ??sin,故④错;sin?(2n+1)π-?=sin?π-?=sin,故⑤正确.
3?3?33??
答案:C
ππ?π?6.解析:由单位圆知,要使y=sin x在?-,a?上是增加的,需满足-<a≤. 22?2?
?ππ?答案:?-,?
?22?