高三数学专题练习数列求和
1.错位相减法
例1:已知?a?是等差数列,其前n项和为S,?b?是等比数列,
nnn且a1?b1?2,a4?b4?27,
S4?b4?10.
(1)求数列?a?与?b?的通项公式;
nn(2)记T
n?anb1?an?1b2??a1bn,n?N?,求证:Tn?12??2an?10bn.
2.裂项相消法
例2:设数列?a?,其前n项和Snn??3n2,?bn?为单调递增的等比
数列,bbb123?512,a1?b1?a3?b3 .
(1)求数列?a?,?b?的通项公式;
nn(2)若cn?
bnnT?c??bn?2??bn?1?,求数列n的前项和n.
一、单选题
1.已知等差数列?a?中Sn9?18,Sn?240,an?4?30?n?9?,则项数为
( ) A.10
B.14
n4C.15 D.17
2.在等差数列?a?中,满足3an?7a7,且a1?0,Sn是?an?前n项的
和,若S取得最大值,则n?( ) A.7
B.8
C.9
D.10
3.对于函数y?f?x?,部分x与y的对应关系如下表:
x 1 2 3 4 5 6 7 8 9 3 7 5 9 6 1 8 2 4 1y x数列?x?满足:
n?1,且对于任意n?N?,点?xn,xn?1?都在函数y?f?x??x2?????x2015?( )
的图象上,则xA.7554
1B.7549 C.7546 D.7539
?1??的?anan?1?4.设等差数列?an?的前n项和Sn,a4?4,S5?15,若数列?前m项和为11,则m?( ) A.8
B.9
n10C.10
n9D.11
?0,S10?0,则在
5.在等差数列?a?中,其前n项和是S,若SS1a1S2,a2,
S9,a9中最大的是( )
S8B.a8S1A.a1
n
nS5C.a5
S9D.a9
nS?6.设数列???1??的前n项和为S,则对任意正整数n,( )
nn???1??1?? A.?2B.
??1?n?1?12 C.
??1?n?12 D.
??1?n?12 ,
7.已知数列?a?满足
na1?1,?2n?1?an?1??2n?1?an?1bn??2n?1?an?1??2n?1?an4n?12,Tn?b1?b2?????bn,若m?Tn恒成立,则m的最
小值为( ) A.0
8.数列?a?的前n项和为S,若a???1?nnB.1 C.2
D.2
1nn?n,则S2018?( )
A.2018
nB.1009
12C.2019 D.1010
a?a9.已知数列?a?中,
?a3?????an?2n?1?n?N??,则a12?a22?a32?????an2等于( )
1A.3?4n?1?
1B.3?2n?1?
2C.4n?1 D.?2n?1?2
?a200?10.已知函数f?n??n( ) A.20100
?2n?3?sin???,且an?f?n?,则a1?a2?a3?2??B.20500 C.40100 D.10050