初二数学下册知识点复习梳理归纳
第十六章 二次根式
一、知识框架
二、知识概念
1.二次根式概念:式子a(a≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根
1
式。
4.二次根式的性质:
a(a>0)
2
(1)(a)=a (a≥0); (2)a2?a? 0 (a=0);
5.二次根式的运算:
?a(a<0)
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
ab=a·b(a≥0,b≥0); bb(b≥0,a>0). ?aa(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
△ 比较数值的方法
(1)、根式变形法
当a?0,b?0时,①如果a?b,则a?b;②如果a?b,则a?b。 (2)、平方法
当a?0,b?0时,①如果a2?b2,则a?b;②如果a2?b2,则a?b。 (3)、分母有理化法
通过分母有理化,利用分子的大小来比较。 例3、比较21与的大小。 3?12?1(4)、分子有理化法
通过分子有理化,利用分母的大小来比较。 例4、比较15?14与14?13的大小。 (5)、倒数法
例5、比较7?6与6?5的大小。
2
例6、比较7?3与87?3的大小。
第十七章 勾股定理
一、知识框架
二、知识概念
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。 2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 4.直角三角形的性质
(1)、直角三角形的两个锐角互余。可表示如下:∠C=90°?∠A+∠B=90° (2)、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30°
可表示如下: ?BC= ∠C=90°
(3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°
1AB 2 3