A,
11?(x?1)2dx, B, ?11?(x?1)1
2dx,
C, ?11?x2dx, D, ?1?(x?1)212, darctgx2 =( )
2x1 B, dxdx 421?x1?x2x1 C, D, 421?x1?xA,
13,darcctg3x =( )
31 B, ?dx,
1?9x21?x233 C, D, dx,?dx, 221?9x1?9xA, ?14,设y?sinx,则 dy =( )
A, 2sin2x B, 2sin2xdx C, sin2xdx D, 15, 设y?1?lnx,则 dy =( )
2sin2x
A, dy?12x1?lnx121?lnx B, dy?12x1?lnx1dx
C, dy?dx D, dy?1?lnxdx
16, y?eA, e?ax?axsinbx,则 dy =( )
(bcosbx?asinbx)dx B, e?ax(bcosbx?asinbx)dx (bcosbx?asinbx) D, e?ax(bcosbx?asinbx)
?e?axd(sinbx)?sinbx·de?ax
?e ?e?ax C, e?ax·cosbxd(bx)?sinbx·e?axd(?ax)
?ax(bcosbx?asinbx)dx。
17, 函数
y?ln(5tgx)的微分是( )
A,dy?11dx B, dy?dx
tgxcosxsin(2x)C,dy?25dx dx D, dy?sin(2x)tgx解答:dy?dln(5tgx)=d[ln(tgx)?ln5]=dln(tgx)?dln5
=dln(tgx)=
11112dxdtgx=dx==dx tgxtgxcos2xsinxcosxsin(2x)18, 设f(x)?1x?ln(1?2x) ,则f'(x)?( )。
(A)
1x2?11?2x (B) ?1x2?11?2x (C)?1x2?21?2x 19, 设函数y?arccos(2x),则
dydx等于( )
x?0A.-1 B.-2 C.-3 D.-4
20,
9. 设y?ln1?x1?x2,则y''|x?0?( ).A. ?32 B. 32 C. ?12 D. 12二、函数的微分答案
1,( D ) 2, ( C ) 3, ( B ) 4, ( A ) 5, ( D ) 6, ( C ) 7, ( B ) 8, ( A ) 9, ( D ) 10, ( C ) 11, ( B ) 12, ( A ) 13, ( D ) 14, ( C ) 15, ( B ) 16, ( A ) 17, ( D ) 18, ( C ) 19 ( B ) 20, ( A )
D)?1x2?21?2x(
三、隐函数的导数
1, y=f(x)由方程 y?x2?siny?0决定,则y?x=( )。 A, y?x??2xx1?cosy B, y?x?1?cosy C, y?2x?x?1?cosy D, y?x?2x1?cosy 解 将二元方程 两边对x求导,得
y?x?2x?cosy?y?x?0,
由此解得
y??2xx?1?cosy。
2,已知x2?2xy?y2?2x,则由此方程决定的隐函数y?f(x)的导数是(A,
dy1?x?ydy1?dx?x?y B, dx?x?yx?y C,
dy1?x?ydy1?x?ydx?x?y D, dx?x?y 对方程两边取微分,
d(x2?2xy?y2)?d(2x), 即 d(x2)?d(2xy)?d(y2)?2dx, 亦即 2xdx?2xdy?2ydx?2ydy?2dx, 或 (2x?2y)dy?(2?2x?2y)dx,
于是 y??dydx?1?x?yx?y。 3,y?arctg(x?y),则y?等于( )
A.?1 B, (x?y)?2
sin2(x?y)C,
1 D, 1cos2(x?y)1?(x?y)2
)。
解答:dy=darctg(x+y)=(dx+dy)/[1+(x+y)^2],即:dy=(dx+dy)/[1+(x+y)^2],
等式两边合并dy=(x?y)?2dx,故:y?=dy/dx=(x?y)?2
4,已知x + y = 1,则由此方程决定的隐函数y?f(x)的导数是( )。
2
2
A.?xy B,
xy C,?yy D, xx
5,
设方程xy?ey?ln2确定y是x的函数,则
dy?( )。 dx1y(A)yx?ey (B)?y?e2?yx (C)x?ey 6, 10. 设xlny?ylnx确定函数 y?y(x),则y'|x?1?( ).A. ?1 B. ?1?e C. 1 解:两边取微分:
d(xlny)=d(ylnx) 然后按微分的乘法公式: lnydx+ xd(lny )=lnxdy+ y d( lnx) lnydx+ x/ydy =lnxdy+ y/x dx x/ydy- lnxdy = y/x dx- lnydx (x/y- lnx)dy =( y/x – lny)dx dy / dx =( y/x – lny)/ (x/y- lnx) 把x=1,y=1代入即可:dy / dx =1
四、高阶导数
1 求y=xa的2阶导数, A.y??ax??1 B, y????(??1)xa C,y????xa?2 D, y????(??1)xa?2
2 求y=sinx的2阶导数。
A. y????cosx B, y???cosx C,y????sinx D, y???sinx
3, 函数y?ln(2x?1)2的二阶导数为:( ) A. y???4(2x?1)?2 B。y????8(2x?1)?2
C.y????4(2x?1)?2 D。y???8(2x?1)?2
(D)?yx?ey D. 1?e
解答:y??[ln(2x?1)]?=2[ln(2x?1)]?=
22(2x?1)?
(2x?1)=
4?1=4(2x?1)
(2x?1)y???4[(2x?1)?1]?=?4(2x?1)?2(2x?1)?=?8(2x?1)?2
4,
设?(u)具有二阶导数,y?x?(x),则y''?( )。
(A)x?''(x)?2?'(x) (B)x?''(x)??'(x) (C)x?''(x)?x?'(x) (D)y?x?(x)
5, 函数y?e2x?1的二阶导数为:( ) B.y???(2x?1)e2x?12x?1A.y???2e2x?1
C. y???2(2x?1)e五、求函数的极限 1, 设
D. y???4e2x?1x2?4f(x)?2则有( )
x?x?6x??2A,limf(x)?? B, limf(x)?0
x??2C,limf(x)??x??244 D, limf(x)?
x??2?55x2?42x?4(x2?4)?解答:limf(x)?lim2=lim===4/5 limx??2x??2x?x?6x??2(x2?x?6)?x??22x?1?52,
limsin(1?x)x?12x?1?( )
11A.1 B.-1 C. - D.
221?cos(1?x)?cos0?解答:limsin(1?x)?lim[sin(1?x)]?lim-?2 ?2x?1x?1222x(x?1)?x?1x?1sin3,limx?011A.0 B.3 C. D. 1
2xx3 =( )
sinx?1,有
x?0x1?cosx4,lim=( )
x?0x2解 利用公式 lim
微积分作业(对外经济贸易大学远程教育)



