2018年考研数学三真题及答案
一、 选择题
1.下列函数中,在x? 0处不可导的是()
A.f?x??xsinxB.f?x??xsin
x C.f?x???cosxD.f?x??cos
x
答案: ?D? 解析:方法一: ?A?limx?0xsinxxf?x??f?0??lim?limsinx?0,可导 x?0x?0xxxxsinxxf?x??f?0??lim?limsin?B?limx?0x?0x?0xxxx?0,可导
12xcosx?1f?x??f?0??lim?lim2?0,可导 ?C?limx?0x?0x?0xxx?1xcosx?1f?x??f?0??lim?lim2?D?limx?0x?0x?0xxx?不存在,不可导
应选?D?. 方法二: 因为f(x)?cosx,f?0??1
?1xcosx?1f?x??f?0?2lim?lim?limx?0x?0x?0xxx不存在
?f?x?在x?0处不可导,选?D?
对?A?:f?x???xsinx在x? 0处可导 对?B?:f?x?~?xgx?x32在x? 0处可导
对?C?:f(x)?cosx在x? 0处可导.
2.设函数f?x?在[0,1]上二阶可导,且?0f?x?dx?0,则
1?A?当f'?x??0时,f??1???0 ?B?当f''?x??0时,?2?1???0 ?D?当f''?x??0时,2???1?f???0 ?2??1?f???0 ?2??C?当f'?x??0时,f??答案?D? 【解析】 将函数
f?x?在
1处展开可得 221?f''????1??1??1??f?x??f???f'???x???x???,2?2?2??2??2???10?f?x?dx???f0??11?f''????1??1??1???f'x??x?????????2?2?2??2??2??122?1??1?11??dx?f????0f''????x??dx,2??2?2???故当f''(x)?0时,?0f?x?dx?选?D?。 3.设M????2?1?f??.从而有f?2??1????0.?2?
??1?x?2?1?xdx,N???xdx,K??2?1?cosxdx,则 2??1?x2e222???A.M??N? .K B.M?K?N. C.K?M?N. D.K?N?M.
答案: ?C? 解析:M???2????1?x?2?2x??dx??2??1?dx??2?1dx, ?22??1?x1?x?2?22?N??2???1?xx?1xdxe?x?1所以x?1 ,因为x?e2eK??2?1?cosxdx,1?cosx?1.2??1?x?1?1?cosxx即e 所以由定积分的比较性质K?M? N,应选?C?.
4.设某产品的成本函数C?Q?可导,其中Q为产量,若产量为Q0时平均成本最小,则()
BC'?Q0??C?Q0? AC'?Q0??0 C.C'?Q0??Q0C?Q0? D.Q0C'?Q0??C?Q0?
答案 D
CQdCQC'QQ?CQ【解析】平均成本C?Q????,?????2??,由于
QdQQC?Q?在Q?Q0处取最小值,可知Q0C'?Q0??0.故选(D).
?110??0115.下列矩阵中,与矩阵???相似的为 ?001????11?1??10?1?????A.?011? B.?011? ?001??001??????11?1??10?1?????C.?010? D.?010? ?001??001?????答案: ?A?
?1?10??110?????1解析:令P??则010P?010????
?001??001??????11?QP?1AP??01?00??120??1?????011??0?001??0???0??11?1??1?10??????0??011??010????1????001??001?
?10??110????10??011??01????001??选项为A
6.设A,B为n阶矩阵,记r?X?为矩阵X的秩,?XY?表示分块矩阵,则
Ar.?A?AB??r?A? B.r?ABA???r?A?
C.r?AB??? max?r?A?,r?B?? D.r?AB???r?AT BT?
答案:?A?
解析:易知选项C错 对于选项B举反例:取A???则BA???11??00?B????1 ?11??12?00??1100?,A,BA?????? ?33??1133?7. 设随机变量X的概率密度f?x?满足
f?1?x??f?1?x?,且?0f?x?dx?0.6,
2则P?X?0??______.
(A)
0.2; (B) 0.3; (C) 0.4; (D) 0.6. 解 由f?1?x??f?1?x?知,概率密度f?x?关于x?1对称,故
P?X?0??P?X?2?,
且P?X?0??P?0?X?2??P?X?2??1,由于P?0?X?2???0f?x?dx?0.6,
2所以2P?X?0??0.4,即P?X?0??0.2,故选项A正确.
8. 设?X1,X2,K,Xn?为取自于总体X样本,令
1nX??Xini?1:N?,?2??的简单随机
,S1?1n(Xi?X)2?n?1i?1,S2?1n(Xi?X)2?ni?1,
则下列选项正确的是______.
(A) (C)
nX??S*nX??S?n?X????:t?n?;
:t?n?1?; (B)
SnX??S*??:t?n?; (D)
??:t?n?1?.
X??解 由于
X???n~N0,1??,(n?1)S?22??(Xi?1ni?X)2?2~?2(n?1),且
?n与
(n?1)S2?2相互独立,由t分布的定义,得