【解读】 本题主要考查的知识点是导函数和原函数的概念.
17.
18.【答案】应填x+y-e=0.
【解读】 先求切线斜率,再由切线与法线互相垂直求出法线斜率,从而得到法线方程.
19.【答案】 应填2π.
【提示】 利用奇、偶函数在对称区间上积分的性质. 20.
x2y
【提示】 将函数z写成z=e·e,则很容易求得结果. 三、解答题 21.本题考查的是【解读】含变上限的
型不定式极限的概念及相关性质. 型不定式极限直接用洛必达法则求解.
22.本题考查的知识点是复合函数的求导计算. 【解读】 利用复合函数的求导公式计算.
23.本题考查的知识点是不定积分的公式法和凑微分积分法.
【解读】 本题被积函数的分子为二项之差,一般情况下要考虑将它分成二项之差的积分. 另外由于被积函数中含有根式,所以也应考虑用三角代换去根式的方法进行积分. 解法1
6 / 9
解法2三角代换去根号.
24.本题考查的知识点是反常积分的计算. 【解读】 配方后用积分公式计算.
25.本题考查的知识点是古典概型的概率计算.
26.本题考查的知识点是利用导数研究函数特性的方法.
【解读】 本题的关键是正确列出函数的关系式,再求其最大值. 解如图2-7-1所示,设A点坐标为(x0,y0),则AD=2-x0,矩形面积
7 / 9
27.本题考查的知识点是二元隐函数全微分的求法.
利用公式法求导的关键是需构造辅助函数F(x,y,z)=e-x+y+x+z,
然后将等式两边分别对x,y,z求导.考生一定要注意:对x求导时,y,z均视为常数,而对y或z求导时,另外两个变量同样也视为常数.也即用公式法时,辅助函数F(x,y,z)中的三个变量均视为自变量. 解法1直接求导法. 等式两边对x求导得
z
2
2
解法2公式法.
解法3微分法. 对等式两边求微分得
8 / 9
三种解法各有优劣,但公式法更容易理解和掌握.建议考生根据自己的熟悉程度,牢记一种方法.
28.本题考查的知识点是曲边梯形面积的求法及旋转体体积的求法. 【解读】 首先应根据题目中所给的曲线方程画出封闭的平面图形,然后根据此图形的特点选择对x积分还是对),积分.选择的原则是:使得积分计算尽可能简单或容易算出.本题如果选择对x积分,则有
这显然要比对y积分麻烦.
在求旋转体的体积时一定要注意是绕x轴还是绕y轴旋转.历年的试卷均是绕x轴旋转,而本题是求绕y轴旋转的旋转体的体积.
旋转体的体积计算中最容易出现的错误(在历年的试卷均是如此)是:
解 画出平面图形,如图2-7-2所示的阴影部分,则有阴影部分的面积
9 / 9