好文档 - 专业文书写作范文服务资料分享网站

2013中考全分类汇编特殊的平行四边形 

天下 分享 时间: 加入收藏 我要投稿 点赞

2013中考全分类汇编特殊的平行四边形(菱形,矩形,正方形)

菱形

1、(绵阳市2013年)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( B ) A.

25282128

cm B.cm C.cm D.cm

21252015

AHBGOD[解析]OA=4,OB=3,AB=5,△BDH∽△BOA,

BD/AB=BH/OB=DH/OA,6/5=BH/3,BH=18/5, AH=AB-BH=5-18/5=7/5,△AGH∽△ABO, GH/BO=AH/AO,GH/3=7/5 / 4,GH=21/20。

C10题图

2、(2013?曲靖)如图,在?ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是( )

A.梯形 B. 矩形 C. 菱形 D. 正方形 考点: 菱形的判定;平行四边形的性质. 分析: 首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可. 解答: 解:四边形AECF是菱形, 理由:∵在?ABCD中,对角线AC与BD相交于点O, ∴AO=CO,∠AFO=∠CEO, ∴在△AFO和△CEO中 , ∴△AFO≌△CEO(AAS), ∴FO=EO, ∴四边形AECF平行四边形, ∵EF⊥AC, ∴平行四边形AECF是菱形. 故选:C. 点评: 此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键. 3、(2013凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )

A.14 B.15 C.16 D.17

考点:菱形的性质;等边三角形的判定与性质;正方形的性质.

分析:根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可. 解答:解:∵四边形ABCD是菱形, ∴AB=BC, ∵∠B=60°,

∴△ABC是等边三角形, ∴AC=AB=4,

∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16, 故选C.

点评:本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.

4、(2012?泸州)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )

24 16 A.B. C. D. 4 2 考点: 菱形的性质;勾股定理. 分析: 由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案. 解答: 解:∵四边形ABCD是菱形,AC=6,BD=4, ∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD, ∴在Rt△AOB中,AB==, ∴菱形的周长是:4AB=4. 故选C. 点评: 此题考查了菱形的性质与勾股定理.此题难度不大,注意掌握数形结合思想的应用. 5、(2013菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为( )

A.15°或30° B.30°或45° C.45°或60° D.30°或60° 考点:剪纸问题.

分析:折痕为AC与BD,∠BAD=120°,根据菱形的性质:菱形的对角线平分对角,可得∠ABD=30°,易得∠BAC=60°,所以剪口与折痕所成的角a的度数应为30°或60°. 解答:解:∵四边形ABCD是菱形,

∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC, ∵∠BAD=120°,

∴∠ABC=180°﹣∠BAD=180°﹣120°=60°, ∴∠ABD=30°,∠BAC=60°.

∴剪口与折痕所成的角a的度数应为30°或60°. 故选D.

点评:此题主要考查菱形的判定以及折叠问题,关键是熟练掌握菱形的性质:菱形的对角线平分每一组对角. 6、(2013?玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:

甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形. 乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.

根据两人的作法可判断( )

A.甲正确,乙错误 B. 乙正确,甲错误 C. 甲、乙均正确 D. 甲、乙均错误 考点: 菱形的判定. 分析: 首先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形. 解答: 解:甲的作法正确;

∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠DAC=∠ACN, ∵MN是AC的垂直平分线, ∴AO=CO, 在△AOM和△CON中∴△AOM≌△CON(ASA), ∴MO=NO, ∴四边形ANCM是平行四边形, ∵AC⊥MN, ∴四边形ANCM是菱形; 乙的作法正确; ∵AD∥BC, ∴∠1=∠2,∠6=∠7, ∵BF平分∠ABC,AE平分∠BAD, ∴∠2=∠3,∠5=∠6, ∴∠1=∠3,∠5=∠7, ∴AB=AF,AB=BE, ∴AF=BE ∵AF∥BE,且AF=BE, ∴四边形ABEF是平行四边形, ∵AB=AF, ∴平行四边形ABEF是菱形; 故选:C. , 点评: 此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形); ②四条边都相等的四边形是菱形. ③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).

7、(2013年潍坊市)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD成为菱形.(只需添加一个即可) 答案:OA=OC或AD=BC或AD//BC或AB=BC等 考点:菱形的判别方法.

点评:此题属于开放题型,答案不唯一.主要考查了菱形的判定,关键是掌握菱形的判定定理.

8、(2013?攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是 2 .

考点: 菱形的性质;解直角三角形. 分析: 求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出tan∠DBE=出即可, 解答: 解:∵四边形ABCD是菱形, ∴AD=AB, ∵cosA=,BE=4,DE⊥AB, ∴设AD=AB=5x,AE=3x, 则5x﹣3x=4, x=2, 即AD=10,AE=6, 在Rt△ADE中,由勾股定理得:DE=在Rt△BDE中,tan∠DBE===2, =8, ,代入求故答案为:2. 点评: 本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长. 9、(2013年临沂)如图,菱形ABCD中,AB=4,?B?60,AE?BC,AF?CD,垂足分别为E,F,连接EF,则的△AEF的面积是 . 答案:33 解析:依题可求得:∠BAD=120°,∠BAE=∠DAF=30°,BE=DF=2,AE=AF=23,所以,三角

o

2013中考全分类汇编特殊的平行四边形 

2013中考全分类汇编特殊的平行四边形(菱形,矩形,正方形)菱形1、(绵阳市2013年)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=(B)A.25282128cmB.cmC.cmD.cm2125
推荐度:
点击下载文档文档为doc格式
2nul07hesi7d82v9y96r
领取福利

微信扫码领取福利

微信扫码分享