———————————————————————————————————————
北师大 七年级上册
第三章 整式及其加减(主)
第三章 整式及其加减
第一节 字母表示数(1)
【学习目标】
1.理解字母可以表示任何数,在不同的问题中,根据具体情况字母限定为一些特殊的数。 2.用字母表示以前学过的运算律和计算公式。 3.探索规律并用字母表示规律。 【学习重难点】
分析理解字母在哪些问题中可以表示任何数,在哪些问题中只能表示限定的数。 【学习方法】自主探究与合作交流相结合. 【学习过程】
模块一 预习反馈 一.学习准备
1.字母可以表示任何数
如字母a可以代表0或-3或2,只要是学习过的数, 都可以表示. 2.字母可表示公式和法则 如:(1)在行程问题中,路程=时间×速度.
如果用s表示路程,v表示速度,t表示时间,那么这个路程公式就可写成: (2)如果用a表示长方形的长,b表示长方形的宽,S表示长方形的面积,l表示长方形的周长,那么 ,它的周长 .
(3)如果用r表示圆的半径,S表示圆的面积,l表示圆的周长,那么 , (4)如果用S表示面积,用a表示三角形的底,用h表示三角形的高,那么三角形的面积公式可以表示为 3、用字母表示运算律
如果用a、b、c分别表示有理数,那么
加法交换律可以表示成: ; 加法结合律可以表示成: ; 乘法交换律可以表示成: ; 乘法结合律可以表示成: ; 乘法分配律可以表示成: . 联想发散:用字母还可以简明地表示一些数学规律,如“互为相反数的两数之和等于0”可表示为a+(-a)=0;用字母还可简明地表达未知数以及问题中的数量关系. 4、阅读教材:第一节《字母表示数》
二、教材精读
5、理解字母可以表示任何数
如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:
正方形个数火柴棒根数1423…10……100………
想一想:如果用x来表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴交流你的做法。
归纳:字母可以表示任何数.用字母表示数可以简明地表达问题中的数量关系,也可以表
1
?——————————————————————————————————————— 达数字规律和公式.这样给我们研究问题带来很大方便. 实践练习:
(1)明明步行上学,速度为vm/s;亮亮骑自行车上学,速度是明明的 3倍,则亮亮的速度可以表示为( )m/s.
(2)今年李华m岁,去年李华( )岁,5年后李华( )岁。
(3)某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是( )元。 (4)如果正方体的棱长是a-1,那么正方体的体积是( ),表面积是( )。 注意:字母可以表示任何数.用字母表示数是初中数学的一个重要特点.用字母表示数时需注意:(1)在同一问题中,同一字母只能表示同一数量,不同的数量要用不同的字母表示;(2)用字母表示实际问题中某一数量时,字母的取值必须使这个问题有意义,并且符合实际;(3)只要是学过的公式、法则,都可以用字母表示;(4)字母“π”一般来说只表示一种量:圆周率;(5)对于用字母表示的数,如果没有特别说明,就应理解为它可以是任何一个数. 三、教材拓展
例1: 用火柴棒搭建图3-1-1的形状:
图3-1-1 第n个图
形可需多少根火柴棒?
(提示:可将①②③这三个图的火柴棒直接数出来,然后观察后面一个图比前一个图都增加几根火柴棒,发现图形中蕴涵的规律,探究出结果.)
北师大 七年级上册
第三章 整式及其加减(主)
探究:由特殊到一般: 图形编号 ① 火柴棒数 ② ③ ④ 实践练习:电影院第一排有m个座位,后面每一排比前一排多2个座位,则第5排的座位数是多少?第10排呢?第n排呢?
模块二 合作探究 例2、 观察下列各式:
22334455×2= +2,×3=+3,×4=+4,×5=+5…… 11223344想一想:本题反映出的规律能否用字母表示出来?
(提示:通过前面所给的算式可以发现:“一个分子比分母大1的正分数”乘以“与它的分子相等的数”,等于这两个数的和.)
n表示正整数,则这个规律用等式表示如下:
2
——————————————————————————————————————— 实践练习: 如图所示,用字母表示阴影部分的面积.
分析:图中阴影部分是由圆和长方形相减组成的,因此,阴影部分面积等于圆的面积减去长方形的面积.
北师大 七年级上册
第三章 整式及其加减(主)
模块三 形成提升
1.小明的爸爸每月工资a元,从今年起每月工资涨了原来的15%,则现在每月工资是( )元.
A、15%a B、85%a C、115%a D、15%+a
2.有一个两位数,它的十位数字是a,个位数字是b,则这个两位数的大小是( ). A、a+b B、a×b C、10a+b D、10(a+b)
3.设n为自然数,则奇数为 ,偶数为 ,三个连续的自然数分别为 。 4.鸡兔同笼,鸡m只,兔n只,则共有头 个,脚 只。
5.一个5人的小分队绿化一片土地,m天可以完成,如果用一个8人的小分队绿化这片土地,需要 天可以完成。 6.选择连线
a与5的差的3倍 3a-5 a的3倍与5的差 1÷(a+b) a与b的和的倒数 3(a-5) a,b的倒数的和 1÷a+1÷b
7.观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20…这些等式反映出正整数间的某种规律,设n表示正整数,用关于n的等式表示出来.
模块四 小结评价 一、本课知识:
1、字母可以表示任何数.用字母表示数可以简明地表达问题中的数量关系,也可以表达数字规律和公式.
2、用字母表示数时需注意:(1)在同一问题中,同一字母只能表示同一数量,不同的数量要用不同的字母表示;(2)用字母表示实际问题中某一数量时,字母的取值必须使这个问题有意义,并且符合实际;(3)只要是学过的公式、法则,都可以用字母表示;(4)字母“π”一般来说只表示一种量:圆周率;(5)对于用字母表示的数,如果没有特别说明,就应理解为它可以是任何一个数. 二、本课典型:
三、我的困惑:
附:课外拓展思维训练:
(2012贵州)猜数字游戏中,小明写出如下一组数:
8163224,,,,,…,小亮57111935 3