好文档 - 专业文书写作范文服务资料分享网站

高二数学《圆的一般方程》教学设计

天下 分享 时间: 加入收藏 我要投稿 点赞

高二数学《圆的一般方程》教学设计

教材版本:人教版(必修) 学科:数学 年级:高二年级 册别:第二册(上) 课题:第七章第二节圆的方程第二课时教学设计 一、教材分析

圆的方程这节内容是学习圆锥曲线的基础,由于圆的方程应用及其广泛,所以对圆的一般方程的要求层次是“掌握”,又由于圆的一般方程中含有三个参变数D、E、F,对它的理解带来一定的困难。因而本节的难点是对圆的一般方程的认识,掌握和应用。突破难点的关键是抓住一般方程的特点。 二、学情分析

圆的一般方程是学生在学习了圆的标准方程后,又掌握了利用待定系数法求圆的标准方程的基础上进行研究的。 但由于学生基础差、学习程度较浅,且对圆的标准方程运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。 三、教法分析

为了充分调动学生学习的积极性,本节课采用“合作探究与启发式教学法”,用环环相扣的问题将探究活动层层深入,教师组织学生分析讨论、合作探究。 四、学法分析

通过展开圆的标准方程,归纳总结得出圆的一般方程,通过求圆的方程,加深对数形结合思想和待定系数法的理解,通过应用圆的一般方程,熟悉用待定系数法求解的过程。 五、设计思想

本节课的设计思想是:以多媒体网络教学平台为依托,为学生营造一个探究学习的环境,让他们参与到多媒体教学中来,探究新知,发现规律,解决问题。 六、教学策略

结合本节内容的特点,可以向学生渗透多种数学思想方法::配方法、待定系数法、数形结合的思想、转化的思想、 分类讨论的思想、方程的思想,同时对学生的观察类比,创新等多种能力的培养有利,通过求圆的一般方程使学生又进一步熟悉待定系数法的应用。 七、教学目标 (一)知识与技能

使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程。 (二)过程与方法

通过对方程x2+y2+Dx+Ey+F=0表示圆的条件的探讨,让学生经历知识形成的过程,培养学生探索发现及分析解决问题的实际能力,并使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方程的方法。 (三)情感态度价值观

渗透数形结合、转化、分类讨论与方程等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

八、教学重点、难点

1.重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程。

(解决办法:(1)要求学生不要死记配方结果,而要熟练掌握通过配方求圆心和半径的方法;(2)加强这方面题型训练。)

2.难点:圆的一般方程的探讨过程。

(解决办法:通过对方程配方分三种讨论得限制条件。)

九、教具:多媒体、黑板、圆规、三角板 十、【教学过程与设计】(课堂实录) 教学内容 教师活动 学生活动 设计意 图 一、复习引入: 师:同学们!上节课我们研究了圆的标准学生活动:回答问题,并填复习巩固写学案: 圆的标准方程,请同学们回忆 一下圆的标准方程,问题1:圆的标准方程的形式是怎样方程,进并填写学案, 的?其中圆心的坐标和半径各是什 一步明确么? 其结构特 征,为新 知识作铺教师:提出问题,并对学生的回答加以肯 垫。 若圆心在坐标原点,半径为r的圆的方定。 程怎么表示? 学生带着 学生活动:动笔展开方程(x-a)2+(y-b)2=r2. 疑问,亲 自动笔实若把标准方程(x-a)2+(y-b)2=r2教师活动:让学生先独立思考,自主探 问题2:究, 展开后,会得出怎样的形式? 引导学生得出方程形式:x2+y2+Dx+Ey+F=0,提出课题 二、新课讲解

践,发现新问题,题。 引入课 师:这就是我们今天要学习的内容:圆的一般方程. 教师板书:圆的一般方程 使学生明确本节课容。 的学习内

课题:圆的一般方程 问题3:是不是每个形如x2+y2+Dx+Ey+F=0的方程表示的曲线都是圆呢? 教师活动:提出问题. 引导学生思考圆的学生活动:先独立思考,自主探究后,再与前后同学合方程的要求,想到利用配方法将展开式化作交流。 成圆的标准方程的形式,并引导学生总结在什么情况下,它的轨迹是圆、点或无轨生生互动:在教师引导下,合作交流,共同探讨方程迹。 x2+y2+Dx+Ey+F=0表示的图组织学生分析讨论,给学生充足的时形。 间讨论,并作适当的引导。 共同探讨后,达成共识:先【师生互动】:教师巡视指导,参与学将方程配方,再与圆的标准生的讨论。 方程比较。 让学生经历知识形成的过程,体会数形结合思想,加深对知识的理解。

221、探讨形成:将方程x+y+Dx+Ey+F=0教师预设:先将方程配方,再与圆的标学生活动:在教师的引导下让学生积 左边配方 准方程比较。教师板书: 通过观察、分析后发现: 极主动地 DED?E?4F(x?)2?(y?)2? 224① 22参与到讨当D+E-4F>0时 22 论中来, 成为学习方程①表示一个以DE,?)22(1)当D2+E2-4F>0时,方程①表示 一个圆; 师:请同学们观察方程①,可以看出什么? 22的主人,让学生经历知识形(?教师提示学生:先把方程①与标准方程比较,再分类讨论。 当D2+E2-4F>0时,方程①表示什么? 为圆心,成的过程,体会知识的来1D2?E2?4F为半径的2龙去脉,圆; 识的理解。 加深对知 教师继续引导:当D+E-4F = 0时,又22 (2)当D+E-4F = 0时,方程①表示表示什么? 一个点; 教师预设:当学生回答不明确时,教师 作适当的提示:当D2+E2-4F = 0时,方 程① DE x??,y?? 只有实数解 22 教师设问:方程x2+y2+Dx+Ey+F=0有没 有实数解?. (3)当D2+E2-4F<0时,方程①不表示 学生回答:当D2+E2-4F = 0 时,方程①表示一个点 (?DE,?) 22 学生回答:没有,因而它不表示任何图形 使学生学结 会归纳总

高二数学《圆的一般方程》教学设计

高二数学《圆的一般方程》教学设计教材版本:人教版(必修)学科:数学年级:高二年级册别:第二册(上)课题:第七章第二节圆的方程第二课时教学设计一、教材分析圆的方程这节内容是学习圆锥曲线的基础,由于圆的方程应用及其广泛,所以对圆的一般方程的要求层次是“掌握”,又由于圆的一般方程中含有三个参变数D、E、F,对它的理解
推荐度:
点击下载文档文档为doc格式
2niy75rvuo7g2489hht2
领取福利

微信扫码领取福利

微信扫码分享