图2-15 升力系数曲线
必须指出,伯努利定理和以上计算升力的公式,只有对完全没有粘性的流体来说才比较准确。事实上,空气也是由粘性的,由于粘性的作用,机翼的升力会受到影响,飞机飞行不仅会产生升力,而且会产生阻力。
升力系数曲线一般如图所示。从图上可看到,曲线的横座标代表迎角?,纵座标代表升力系数CY,提据一定的迎角便可查出它的升力系数。ɑ
如果是机翼前缘稍上抬,翼弦同气流有一个不大的迎角?,如图所示。机翼产生的升力会更大些。所谓迎角就是相对气流与翼弦所成的角度。翼弦是指翼型前缘与后缘连成的直线。
一般上下不对称的翼型在迎角等于0度时,仍然产生一定的升力,因此升力系数在0度迎角时不为零,只有到负迎角时才使升力系数为零。对称翼型在0度迎角时不产生升力,升力系数为0。升力系数为零的迎角就是无升力迎角?0。从这个迎角开始,迎角于升力系数成正比,升力系数曲线称为一根向上斜的直线。当迎角加大到一定程度以后,如图中16度时升力系数就开始下降。升力系数达到最大值的迎角称为临界迎角。这时的升力系数称为最大升力系数,用符号CYmax表示。飞机飞行时,如果迎角超过临界迎角,便会因为升力突然减少以至下坠,这种情况称为失速。
41
第四节 飞行的阻力
飞机飞行时机翼上不仅有升力产生,同时还会由于空气的粘性会产生阻力。 1、空气的粘性和边界层与雷诺数
用两个非常接近,但有没有接触的圆盘做实验,其中一个用电动机带动,使它高速旋转;另一个用线吊起来,经过一段时间以后,那个用线吊起来的远方也会慢慢的旋转起来,这个实验可以证实空气是有粘性的。
图2-16 空气的粘度
由于空气粘性的影响,当空气流过物体表面的时候,贴近物体表面的空气质点粘附在物体表面上,它们的运动速度为零,随着同物体表面距离的增加,空气质点的速度也逐渐增大。远到一定的距离后,空气粘性的作用就不那么明显了。这一薄层空气叫做边界层或附面层。在模型飞机机翼表面,边界层大约有2~3毫米厚,在边界层内,如果空气流动是一层一层有规律的,叫做层流边界层;如果空气流动是杂乱无章的,叫做紊流边界层。
图2-17 层流和紊流
层流边界层的空气质点的流动可以认为使一层一层的,很有层次也很有规律。各层的空气都以一定的速度在流动,层与层之间的空气质点不会互相乱窜。所以在层流边界层空气粘性所产生的影响也较小。而紊流边界层却不然。在紊流边界层空气质点的运动规律正好与层流相反,是杂乱无章的。靠近最上面的那层速度比较大的空气质
42
点可能会跑到底下速度比较慢的地方来,而底下的质点也会跑到上面去。
边界层内空气质点流动的这些规律,也反映在这两种边界层内速度变化方面。虽然这两种边界层在最靠近物体得到那一点气流速度都是零,即相当于空气“粘”在物体表面一样;而在边界层外边的气流速度,都与没有粘性的情况相同。但是在从0变化到边界外边的速度之间,边界层内部的速度变化规律确实不同的。从图中可以看到,层流边界层内的速度变化比较激烈;而紊流边界层除了十分贴近物体表面的范围外,在其他地方速度变化并不大,所以紊流边界层内的空气质点具有的动能也比较大。当物体表面上形成紊流边界层时,空气质点的运动就很不容易停顿下来,层流边界层则相反。
刚才讲了边界层内空气质点运动速度的变化情况,那么边界层内的压强有没有变化呢?要注意,前面讲过的伯努利定理在边界层内已不再适用。因为伯努利定理中假定气流在通道中的能量是不变的。而在边界层中,由于粘性的影响消耗了空气质点的一部分动能,在物体表面上,由于粘性影响最大,空气质点的动能全部消耗殆尽。研究表明,尽管沿着边界层厚度方向空气质点的速度不同,但它们的静压确是相同的。
空气流过物体表面时,什么时候会产生层流边界层或者紊流边界层呢?产生不同边界层与哪些因素有关呢?
气流在刚开始作用于的物体时,在物体表面所形成的边界层是比较薄的,边界层内的流动也比较有层次。所以一般是层流边界层。空气质点流过的物体表面越长,边界层也越厚,这时边界层内的流动便开始混乱起来了。由于气流流过物体表面受到扰乱(不管物体表面多么光滑,对于空气质点来说,还是很粗糙的)。结果是空气质点的活动越来越活跃,边界层内的气流不再很有层次,边界层内的空气质点互相攒动,互相影响,物体表面的边界层也就变成了紊流边界层。
决定物体表面边界层到底是层流或是紊流,主要根据五个因素:(1)气流的相对速度;(2)气流流过的物体表面长度;(3)空气的粘性和密度;(4)气流本身的紊乱程度;(5)物体表面的光滑程度和形状。
气流的流速越大,流过物体表面的距离越长,或空气的密度越大(即每单位体积的空气分子越多),层流边界层变越容易变成紊流边界层。相反,如果气体的粘性越小,流动起来变越稳定,越不容易变成紊流边界层。在考虑层流边界层是否会变成紊流时,这些有关的因素都要估计在内。
空气同物体的相对速度?越大,空气流过物体表面的距离l(模型飞机的翼弦长)越长,空气的密度越大,层流边界层就越容易变成紊流边界层。这三个因素相乘后同空气的粘性系数?相比,比值就叫做雷诺数,用Re表示:0.00000182Kgs/m2
??lRe?
?式中?的单位是m/s,l的单位是m,?近似取0.125Kgs2/m4,?可取0.000001Kg82s/m2。这样,雷诺数可以简化成:
Re?69000?l
在空气动力学上,将层流边界层变成紊流边界层的雷诺数,称为临界雷诺数。如
43
果空气流过物体时的雷诺数小于临界雷诺数,那么在物体表面形成的边界层都是层流边界层;如果空气流过同一物体时的雷诺数超过临界雷诺数,那么在这个物体表面的层流边界层就开始变成紊流边界层。因此,临界雷诺数表示流体从层流向紊流过渡的转折点。一般模型飞机机翼翼型的临界雷诺数大约是50000。
必须指出,上式是对应于气温为15℃的海平面国际标准大气的条件下的。气温对空气粘性的影响比较大啊,加之模型飞机的飞行雷诺数本来就不大,所以气温对模型飞机的雷诺数的影响就显得更加严重。
图2-18 雷诺数随气温变化
做模型的风洞试验时,如果能使模型试验的雷诺数与实际飞行的雷诺数相等,那么仅就空气粘性这个因素而言,模型流场的流型与实物流场便相似了。这是流体力学的相似法之一。作低速实验时,这样取得的阻力系数便与实际飞行的相等了。 2、飞行的阻力
只要物体同空气有相对运动,必然有空气阻力作用在物体上。作用在模型飞机上的阻力主要有摩擦阻力,压差阻力和诱导阻力以及干扰阻力。
(1)摩擦阻力,当空气流过机翼表面的时候,由于空气的粘性作用,在空气和机翼表面之间会产生摩擦阻力。如果机翼表面的边界层是层流边界层,空气粘性所引起的摩擦阻力比较小;如果机翼表面的边界层是紊流边界层,空气粘性所引起的摩擦阻力就比较大。摩擦阻力的大小和粘性影响的大小、物体表面的光滑程度以及物体与
44
空气接触面积(称为浸润面积)等因素有关。模型飞机暴露在空气中的面积越大、摩擦阻力也愈大。
为了减少摩擦阻力,可以减少模型飞机同空气的接触面积,也可以把模型表面做光滑些,使表面产生层流层。但不是越光滑越好,因为表面太光滑,容易引起层流边界层,在模型飞机的低雷诺数条件下,层流边界层的气流容易分离,会使压差阻力大大增加。
而对于不产生升力的部件,还是设法把它的表面打磨得比较光滑一些,以减少它的摩擦阻力。
(2)压差阻力。一块平板,平行于气流运动阻力比较小,垂直于气流运动阻力比较大,如图所示。因为这种阻力是由于平板前后存在压力差而引起的,所以,我们把这种阻力叫做压差阻力。如果进行进一步的研究,可以看到,产生这个压力差的根本原因还是由于空气的粘性。
图2-19 压差阻力
图2-20 驻点与粘度对气流的流动影响
以圆球为例,当空气流动,假设空气没有粘性,则圆球前后、上下的压力分布分别相同,所以也没有上下方向的压力差——升力,也没有前后方向的压力差——压差阻力。只有当空气有粘性时,气流流过圆球表面会损失一些能量,使得在圆球的前端
45