第五章 异方差性
本章教学要求:根据类型,异方差性是违背古典假定情况下线性回归模型建立的另一问题。通过本章的学习应达到,掌握异方差的基本概念包括经济学解释,异方差的出现对模型的不良影响,诊断异方差的方法和修正异方差的方法。经过学习能够处理模型中出现的异方差问题。
第一节 异方差性的概念
一、例子
例1,研究我国制造业利润函数,选取销售收入作为解释变量,数据为1998年的食品年制造业、饮料制造业等28个截面数据(即n=28)。数据如下表,其中y表示制造业利润函数,x表示销售收入(单位为亿元)。
Y对X的散点图为
从散点图可以看出,在线性的基础上,有的点分散幅度较小,有的点分散幅度较大。因此,这种分散幅度的大小不一致,可以认为是由于销售收入的影响,使得制造业利润偏离均值的程度发生了变化,而这种偏离均值的程度大小不同是一种什么现象?如何定义?如果非线性,则属于哪类非线性,从图形所反映的特征看并不明显。
下面给出制造业利润对销售收入的回归估计。
模型的书写格式为
??12.0335?0.1044XY(0.6165)(12.3666)R?0.8547,S.E.?84191.34,F?152.9322Y?213.4639,sY?146.49052
通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在一种系统性的表现。
例2,改革开放以来,各地区的医疗机构都有了较快发展,不仅政府建立了一批医疗机构,还建立了不少民营医疗机构。各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,而医疗服务需求与人口数量有关。为了给制定医疗机构的规划提供依据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。根据四川省2000年21个地市州医疗机构数与人口数资料对模型估计的结果如下:
???563.0548?5.3735XYi i (291.5778) (0.644284) t =(-1.931062) (8.340265)
22 R?0.785456 R?0.774146 F?69.56003
式中Y表示卫生医疗机构数(个),X表示人口数量(万人)。从回归模型估计的