(08青海省卷28题解析)解:(1)设y?kx, 把(2,4)代入,得k?2.
······················································································ (1分) ?y?2x. ·
自变量x的取值范围是:0≤x≤30. ··················································· (2分) (2)当0≤x≤5时,
设y?a(x?5)?25, ········································································ (3分) 把(0,0)代入,得25a?25?0,a??1.
2?y??(x?5)2?25??x2?10x.························································ (5分)
当5≤x≤15时,
···························································································· (6分) y?25 ·
??x2?10x(0≤x≤5)即y??.
?25(5≤x≤15)(3)设王亮用于回顾反思的时间为x(0≤x≤15)分钟,学习效益总量为Z, 则他用于解题的时间为(30?x)分钟. 当0≤x≤5时,
Z??x2?10x?2(30?x)??x2?8x?60??(x?4)2?76. ····················· (7分) ?当x?4时,Z最大?76. ································································· (8分)
当5≤x≤15时,
Z?25?2(30?x)??2x?85. ··························································· (9分)
Z随x的增大而减小,
?当x?5时,Z最大?75.
综合所述,当x?4时,Z最大?76,此时30?x?26. ··························· (10分) 即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时,学习收益总量最大. ······································································································ (11分)
88.(08山东济宁26题)(12分)
△ABC中,?C?90,?A?60,AC?2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于
P,Q两点,线段MN运动的时间为ts.
(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);
(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;
t为何值时,(3)以C,P,Q为顶点的三角形与△ABC相
似?
(08山东济宁26题解析)解:(1)当点P在AC上时,
AM?t,?PM?AMtg60?3t.
1?y?t23t?32t(0≤t≤1). ····························································· 2分 23(4?t). 3当点P在BC上时,PM?BMtan30?133223y?t(4?t)??t?t(1≤t≤3). ··········································· 4分
2363(2)
AC?2,?AB?4.?BN?AB?AM?MN?4?t?1?3?t.
3(3?t). ······························································ 6分 33(3?t), 3?QN?BNtan30?由条件知,若四边形MNQP为矩形,需PM?QN,即3t??t?3. 43?当t?s时,四边形MNQP为矩形. ······················································· 8分
43(3)由(2)知,当t?s时,四边形MNQP为矩形,此时PQ∥AB,
4?△PQC∽△ABC. ·············································································· 9分
除此之外,当?CPQ??B?30时,△QPC∽△ABC,此时
CQ3?tan30?. CP3AM1?cos60?,?AP?2AM?2t.?CP?2?2t. ························· 10分 AP2BN23BN3,?BQ??(3?t). ?cos30?3BQ232又
BC?23,?CQ?23?2323t(3?t)?. ··································· 11分 3323t31?3?,t?. 2?2t32?当t?13s或s时,以C,P,Q为顶点的三角形与△ABC相似. ················ 12分 24
89.(08四川巴中30题)(12分)30.已知:如图14,抛
32x?3与x轴交于点A,点B,与直线433点C,直线y??x?b与yy??x?b相交于点B,
44轴交于点E.
(1)写出直线BC的解析式. (2)求△ABC的面积.
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线
设运动BC上以每秒2个单位长度的速度从B向C运动.
时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最
物线y??大面积是多少?
(08四川巴中30题解析)解:(1)在y??32x?3中,令y?0 4C E y 3??x2?3?0
4?x1?2,x2??2
N ?A(?2,0),B(2,0) ········································ 1分
又
点B在y??A M D O P B x 3x?b上 43?0???b
23b?
233·································································· 2分 ?BC的解析式为y??x? ·
4232?y??x?3?x1??1???4(2)由?,得?9
y1??y??3x?3??4??429???C??1,?,B(2,0)
4???x2?2 ············································· 4分 ??y2?09················································································ 5分 ?AB?4,CD? ·4199··········································································· 6分 ?S△ABC??4?? ·
242(3)过点N作NP?MB于点P EO?MB ?NP∥EO
················································································· 7分 ?△BNP∽△BEO ·
BNNP ··························································································· 8分 ??BEEO由直线y??33?3?x?可得:E?0,? 42?2?35,则BE? 22?在△BEO中,BO?2,EO?62tNP,?NP?t ·········································································· 9分 ?5352216?S?t(4?t)
25312······································································· 10分 S??t2?t(0?t?4) ·
55312··············································································· 11分 S??(t?2)2? ·
5512此抛物线开口向下,?当t?2时,S最大?
512?当点M运动2秒时,△MNB的面积达到最大,最大为. ························ 12分
5?
90.(08四川自贡26题)抛物线y?ax?bx?c(a?0)的顶点为M,与x轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b。若关于x的一元二次方程
2(m?a)x2?2bx?(m?a)?0有两个相等的实数根。
(1)判断△ABM的形状,并说明理由。
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形。
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆
心坐标。
(08四川自贡26题解析)解:(1)令??(2b)?4(m?a)(m?a)?0 得a?b?m
由勾股定理的逆定理和抛物线的对称性知
△ABM是一个以a、b为直角边的等腰直角三角形 (2)设y?a(x?2)?1
∵△ABM是等腰直角三角形 ∴斜边上的中线等于斜边的一半 又顶点M(-2,-1) ∴
222221AB?1,即AB=2 22∴A(-3,0),B(-1,0)
将B(-1,0) 代入y?a(x?2)?1中得a?1
∴抛物线的解析式为y?(x?2)?1,即y?x?4x?3 图略
(3)设平行于x轴的直线为y?k
解方程组错误!不能通过编辑域代码创建对象。 得x1??2?22k?1,x2??2?k?1 (k??1)
∴线段CD的长为2k?1 ∵以CD为直径的圆与x轴相切 据题意得k?1?k ∴k?k?1 解得 k?21?5 21?51?5)和(?2,) 22∴圆心坐标为(?2,
91.(08新疆自治区24题)(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m. (1)在如图所示的平面直角坐标系中,求抛物线的表达式.
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?