i2 i1 2 1 R12 R31 + + R1 R3 u23 u13 R2
- - 3 R23 3 Y 2
1、三端网络的等效概念
若两个三端网络的电压u13、u23与电流i1、i2之间的关系完全相同时,则称这两个三端网络对外互为等效。
2、等效互换的公式:
Y形:u13=R1i1+R3(i1+i2)=(R1+R3)i1+R3i2
u23=R2i2+R3(i1+i2)=R3i1+(R2+R3)i2
u13u13?u23?i??1R?R?1312⊿形:?
uu?u232313?i??2?RR1223?2.3 电阻的Y—⊿等效变换
1 R12R31?R23R31R23R31?u?i?i21?13R12?R23?R31R12?R23?R31? ?RRRR?RR233112233123?u?i1?i223?R?R?RR?R?R122331122331? ⊿—Y:
R1?R12R31R12R23R23R31 R2? R3?
R12?R23?R31R12?R23?R31R12?R23?R31 R12 i1 1 + R31 u13 分母为⊿形中三个电阻之和。
分子为⊿形中与之对应节点相联的电阻之积
- 2 R23 + u 23 -
3 Y—⊿:
R12?R1R2?R2R3?R3R1
R3
R23?R31?R1R2?R2R3?R3R1
R1R1R2?R2R3?R3R1
R2分子为Y形电阻的两两乘积之和
分母为Y形与之对应两节点无关的电阻
例:
a 9Ω b 6Ω 6Ω 1Ω 1Ω
1Ω
求Rab=?
a 9Ω b 6Ω 3Ω 6Ω 3Ω 3Ω Rab?1111Ω
9?3?4