好文档 - 专业文书写作范文服务资料分享网站

初中数学动点问题例题集 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

动点问题专题训练

1、如图,已知△ABC中,AB?AC?10厘米,BC?8厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运B 动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

解:(1)①∵t?1秒, ∴BP?CQ?3?1?3厘米,

∵AB?10厘米,点D为AB的中点, ∴BD?5厘米. 又∵厘米,

∴PC?8?3?5厘米PC?BC?BP,BC?8, ∴PC?BD. 又∵AB?AC, ∴?B??C,

∴△BPD≌△CQP. ························································································· (4分) ②∵vP?vQ, ∴BP?CQ,

又∵△BPD≌△CQP,?B??C,则BP?PC?4,CQ?BD?5, ∴点P,点Q运动的时间t?∴vQ?CQt?543?154BP3?43A D Q P

C 秒,

厘米/秒. ············································································ (7分)

(2)设经过x秒后点P与点Q第一次相遇, 由题意,得

154x?3x?2?10,

1

解得x?803秒.

80?3?80厘米.

∴点P共运动了

3∵80?2?28?24,

∴点P、点Q在AB边上相遇, ∴经过

803秒点P与点Q第一次在边AB上相遇. ················································(12分)

34x?6与坐标轴分别交于A、B2、直线y??两点,动点P、Q同时从O点出发,

同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.

(1)直接写出A、B两点的坐标;

(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S?485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四

y B 边形的第四个顶点M的坐标.

解(1)A(8,0)B(0,6) ·················· 1分 (2)?OA?8,OB?6 ?AB?10

?点Q由O到A的时间是?点P的速度是

6?108P x 81?8(秒)

O Q A ?2(单位/秒) ·· 1分

当P在线段OB上运动(或0≤t≤3)时,OQ?t,OP?2t

S?t ·························································································································· 1分

2当P在线段BA上运动(或3?t≤8)时,OQ?t,AP?6?10?2t?16?2t, 如图,作PD?OA于点D,由

?S?12OQ?PD??35t?2PDBO?APAB,得PD?48?6t5, ·································· 1分

245t·················································································· 1分

(自变量取值范围写对给1分,否则不给分.)

(3)P?,?··········································································································· 1分

?55?2

?824?24???824??1224??12··························································· 3分 I1?,?,M2??,?,M3?,?? ·5??55??55??5

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,

B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.

(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

解:(1)⊙P与x轴相切.

∵直线y=-2x-8与x轴交于A(4,0),

与y轴交于B(0,-8),

∴OA=4,OB=8.

由题意,OP=-k, ∴PB=PA=8+k.

在Rt△AOP中,k2+42=(8+k)2, ∴k=-3,∴OP等于⊙P的半径, ∴⊙P与x轴相切.

(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P

在线段OB上时,作PE⊥CD于E.

∵△PCD为正三角形,∴DE= ∴PE=33212CD=

32,PD=3,

.

∵∠AOB=∠PEB=90°, ∠ABO=∠PBE, ∴△AOB∽△PEB,

33AOABPEPB4452, PB∴?,即=3

∴PB?3152,

3152∴PO?BO?PB?8?∴P(0,∴k?3152?8), ?8.

3152当圆心P在线段OB延长线上时,同理可得P(0,-∴k=-315231523152-8),

-8, -8或k=-3152∴当k=-8时,以⊙P与直线l的两个交点和圆心P为顶点的三

角形是正三角形.

4(09哈尔滨) 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),

点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

解:

4

5在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分

5

D A P Q B E C 图16

PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).

(1)当t = 2时,AP = ,点Q到AC的距离是 ; (2)在点P从C向A运动的过程中,求△APQ的面积S与

t的函数关系式;(不必写出t的取值范围)

(3)在点E从B向C运动的过程中,四边形QBED能否成

为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. ..

解:(1)1,;

58(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴AP由△AQF∽△ABC,BC?52?32?4, 得

QF4??12t5?3?t.

.∴QF4565t?45t.

∴S即S(3?t)?252, .

B ??t?t(3)能.

①当DE∥QB时,如图4.

∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC,得即

t3?3?t5AQAC?APABE Q D A P C 图4

B ,

. 解得t?98.

Q D A P

E C ②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得 即

t5?3?t3AQAB?APAC,

. 解得t或t?4514?158图5

B .

(4)t?52.

Q G ①点P由C向A运动,DE经过点C. 连接QC,作QG⊥BC于点G,如图6.

PC?t,QC2?QC2342222?QG?CG?[(5?t)]?[4?(5?t)]55.

?52D A P C(E) B G 由PC2,得t2?[(5?t)]?[4?(5?t)]55324图6 2,解得t.

Q ②点P由A向C运动,DE经过点C,如图7.

6

A P D C(E) 图7 3445222(6?t)?[(5?t)]?[4?(5?t)],t?5514】

6如图,在Rt△ABC中,?ACB?90°,?B?60°,

BC?2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为A ?. (1)①当?? 度时,四边形EDBC是等腰梯形,此时AD的长为 ; ②当?? 度时,四边形EDBC是直角梯形,此时AD的长为 ;

(2)当??90°时,判断四边形EDBC是否为菱形,并说A 明理由.

E O ? D l C B C O B (备用图)

解(1)①30,1;②60,1.5; ????????4分 (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED.

∵CE//AB, ∴四边形EDBC是平行四边形. ????????6分 在Rt△ABC中,∠ACB=90,∠B=60,BC=2,

∴∠A=300.

∴AB=4,AC=23. ∴AO=

12AC=3 . ????????8分

0

0

在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC.

又∵四边形EDBC是平行四边形,

∴四边形EDBC是菱形 ????????10分

7如图,在梯形ABCD中,AD∥BC,AD?3,DC?5,AB?42,∠B?45?.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度A D 向终点D运动.设运动的时间为t秒. (1)求BC的长.

N (2)当MN∥AB时,求t的值.

(3)试探究:t为何值时,△MNC为等腰三角形. B C M 7

解:(1)如图①,过A、D分别作AK?BC于K,DH?BC于H,则四边形ADHK是矩形

∴KH?AD?3. ····························································································· 1分 在Rt△ABK中,AK?AB?sin45??42.22?4

BK?AB?cos45??42?22·································································· 2分 ?4 ·

在Rt△CDH中,由勾股定理得,HC? B

K (图①)

H

C

5?4?3

22∴BC?BK?KH?HC?4?3?3?10························································· 3分

A

D

A

D

N

B

C

G (图②)

M

(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形 ∵MN∥AB ∴MN∥DG ∴BG?AD?3 ∴GC?10?3?7 ························································································· 4分 由题意知,当M、N运动到t秒时,CN?t,CM?10?2t. ∵DG∥MN ∴∠NMC?∠DGC 又∠C?∠C

∴△MNC∽△GDC ∴即

CNCDt5??CMCG ································································································ 5分

10?2t750解得,t? ································································································· 6分

17(3)分三种情况讨论:

①当NC?MC时,如图③,即t?10?2t ∴t? B

103 ········································································································ 7分 A

D

N

B

(图④)

C

A

D N

M

(图③)

C 8

M H E

②当MN?NC时,如图④,过N作NE?MC于E 解法一:

由等腰三角形三线合一性质得EC?在Rt△CEN中,cosc?ECNC?125?tt?35MC?12?10?2t??5?t

又在Rt△DHC中,cosc?∴

5?tt?358CHCD

····································································································· 8分

解得t?25解法二:

∵∠C?∠C,?DHC??NEC?90? ∴△NEC∽△DHC ∴即

NCDCt5??ECHC

5?t3258

∴t? ········································································································ 8分

12NC?12t

③当MN?MC时,如图⑤,过M作MF?CN于F点.FC?解法一:(方法同②中解法一) t32cosC???

MC10?2t5FC1A D

N F

解得t?6017

B

(图⑤)

H M

解法二:

∵∠C?∠C,?MFC??DHC?90? ∴△MFC∽△DHC ∴

FCHC?MCDCC

t10?2t2?即 351∴t?6017

103综上所述,当t?

、t?258或t?6017时,△MNC为等腰三角形 ················· 9分

9

8如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB?4,BC?6,∠B?60?. (1)求点E到BC的距离;

(2)点P为线段EF上的一个动点,过P作PM?EF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EP?x. ①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由; ②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.

A E B

图1 A E B

D F

B

A E P N

D F C B

A E P D N F

C

M D F C

图2

D

M 图3

C

(第25题) A

E B

图5(备用)

F C

图4(备用)

10

解(1)如图1,过点E作EG?BC于点G. 1分

∵E为AB的中点,

∴BE?12在Rt△EBG中,∠B?60?,∴∠BEG?30?.··············2分

A E B

D F

AB?2.∴BG?12BE?1,EG?2?1?22 3.G

图1

C

即点E到BC的距离为3. ···········································3分 (2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM?EF,EG?EF,∴PM∥EG. ∵EF∥BC,∴EP?GM,PM?EG?3.

同理MN?AB?4. ······························································································ 4分 如图2,过点P作PH?MN于H,∵MN∥AB, ∴∠NMC?∠B?60?,∠PMH?30?. ∴PH?12PM?32A E P H

B

N

D F C

.32. 32?522∴MH?PM?cos30??G M 图2

则NH?MN?MH?4?.

在Rt△PNH中,PN?NH?PH2??3??5?????????22????22 7.∴△PMN的周长=PM?PN?MN?3?7?4. ············································ 6分

②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角

形.

当PM?PN时,如图3,作PR?MN于R,则MR?NR. 类似①,MR?.

2∴MN?2MR?3. ································································································ 7分

3∵△MNC是等边三角形,∴MC?MN?3.

此时,x?EP?GM?BC?BG?MC?6?1?3?2. ········································· 8分 A E B

P R

G

M

图3

C

B

G

图4

11

D N F

A E P

D F N C

B

A E D F(P) N

M G

图5

M

C

当MP?MN时,如图4,这时MC?MN?MP?此时,x?EP?GM?6?1?3?5?3.

3.

当NP?NM时,如图5,∠NPM?∠PMN?30?. 则∠PMN?120?,又∠MNC?60?, ∴∠PNM?∠MNC?180?.

因此点P与F重合,△PMC为直角三角形.

∴MC?PM?tan30??1. 此时,x?EP?GM?6?1?1?4. 综上所述,当x?2或4或5??·······················10分 3时,△PMN为等腰三角形. ·

?9如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,

同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,

设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2)求正方形边长及顶点C的坐标;

(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.

解:(1)Q(1,0) ····································································································· 1分 点P运动速度每秒钟1个单位长度. ·························································································································· 2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF ∴AF?10?4?6.

?BE?4.

y 在Rt△AFB中,AB?82?62?10 3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵?ABC?90?,AB?BC ∴△ABF≌△BCH.

12

AMFONDCPHGxBQE ∴BH?AF?6,CH?BF?8.

∴OG?FH?8?6?14,CG?8?4?12. ∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴

APAB?AMAF35?MPBF. ?45tt10?AM6?MP8.

35t,ON?PM?45t ∴AM?t,PM?. ∴PN?OM?10?.

设△OPQ的面积为S(平方单位) ∴S?12?(10?35t)(1?t)?5?4710t?310t2(0≤t≤10) ························································ 5分

说明:未注明自变量的取值范围不扣分.

47310 ∵a??<0 ∴当t??102?(?310)?476时, △OPQ的面积最大. ····························· 6分

此时P的坐标为((4) 当

t?539415?,

295135310) . ················································································ 7分

或t时, OP与PQ相等. ························································ 9分

10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E

?是边BC的中点.且EF交正方形外角?DCG的平行线CF于点F,?AEF?90,

求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE?EF.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

A D

F

A

D

F

F A

D

B E C 图1

G

B

E C 图2

G B 图3

C E G

13

解:(1)正确. (1分)

A M B E

C D

F G

证明:在AB上取一点M,使AM?EC,连接ME. (2分) ?BM?BE.??BME?45°,??AME?135°. ?CF是外角平分线, ??DCF?45°,

??ECF?135°. ??AME??ECF.

??AEB??BAE?90°,?AEB??CEF?90°,

??BAE??CEF.

?△AME≌△BCF(ASA). ············································································· (5分)

······································································································ (6分) ?AE?EF. ·

(2)正确. ····························································· (7分) 证明:在BA的延长线上取一点N. 使AN?CE,连接NE. ········································ (8分)

?BN?BE.

??N??PCE?45°.

N A D

F ?四边形ABCD是正方形, ?AD∥BE. ??DAE??BEA.

B C E G

??NAE??CEF.

?△ANE≌△ECF(ASA). ·············································································(10分)

····································································································· (11分) ?AE?EF. ·

11已知一个直角三角形纸片OAB,其中?AOB?90°,OA?2,OB?4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.

(Ⅰ)若折叠后使点B与点A重合,求点C的坐标; y

B

x O A (Ⅱ)若折叠后点B落在边OA上的点为B?,设OB??x,OC?y,试写出y关于x的函数解析式,并确定y的取值范围;

B y x O A

(Ⅲ)若折叠后点B落在边OA上的点为B?,且使B?D∥OB,求此时点C的坐标. y

B 14

O A x 解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.

设点C的坐标为?0,m??m?0?. 则BC?OB?OC?4?m. 于是AC?BC?4?m.

在Rt△AOC中,由勾股定理,得AC2?OC2?OA2, 即?4?m??m?2,解得m?22232.

?3?点C的坐标为?0,?2?······························································································ 4分 ?. ·?(Ⅱ)如图②,折叠后点B落在OA边上的点为B?, 则△B?CD≌△BCD. 由题设OB??x,OC?y, 则B?C?BC?OB?OC?4?y,

在Rt△B?OC中,由勾股定理,得B?C2?OC2?OB?2.

??4?y??y?x,

222即y??18x?2 ·········································································································· 6分

2由点B?在边OA上,有0≤x≤2,

? 解析式y??18x?2?0≤x≤2?为所求.

2? ?当0≤x≤2时,y随x的增大而减小, ?y的取值范围为

32≤y≤2.················································································ 7分

(Ⅲ)如图③,折叠后点B落在OA边上的点为B??,且B??D∥OB. 则?OCB????CB??D.

??OCB????CBD,有CB??∥BA. 又??CBD??CB??D,?Rt△COB??∽Rt△BOA.

OB??OAOB在Rt△B??OC中,

?OC,得OC?2OB??. ············································································ 9分

设OB???x0?x?0?,则OC?2x0. 由(Ⅱ)的结论,得2x0??18x20?2,

?x0?0,?x0??8?45. 解得x0??8?45.15

·············································································10分 85?16. ·?点C的坐标为0,??12问题解决 F

M 如图(1),将正方形纸片ABCD折叠,使点B落在CD边A 上一点E(不与点C,D重合),压平后得到折痕MN.当

CECD?12D

时,求

AMBN的值.

B E

方法指导:

为了求得AM的值,可先求BN、AM的长,不妨设:AB=2

BN

类比归纳

在图(1)中,若

CECDCECD??131,则

AMBNN

图(1)

C

的值等于 ;若

AMBNCECD?14,则

AMBN的

值等于 ;若

n的式子表示)

n(n为整数),则的值等于 .(用含

联系拓广

如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN,设

ABBC?1m?mCE1AM?1?,?,则

CDnBN的值等

于 .(用含m,n的式子表示)

解:方法一:如图(1-1),连接BM,EM,BE.

F M A D

B

N 图(1-1)

16

F A M D E

B

N

图(2)

C

E

C

由题设,得四边形ABNM和四边形FENM关于直线MN对称.

∴MN垂直平分BE.∴BM?EM,BN?EN.············································ 1分 ∵四边形ABCD是正方形,∴?A??D??C?90°,AB?BC?CD?DA?2. ∵CECD?12设BN?x,则NE?x,NC?2?x. ,?CE?DE?1. 在Rt△CNE中,NE2?CN2?CE2. ∴x2??2?x??12.解得x?254,即BN?54 ················································ 3分 . 在Rt△ABM和在Rt△DEM中,

222AM?AB?BM, 222DM?DE?EM,

2222 ······································································· 5分 ?AM?AB?DM?DE. 设AM?y,则DM?2?y,∴y?2??2?y??1.

2222 解得y? ∴AMBN?1415,即AM?14. ················································································ 6分

. ··································································································· 7分

54. ·········································································· 3分

方法二:同方法一,BN? 如图(1-2),过点N做NG∥CD,交AD于点G,连接BE.

F M G A D

E

B C N

图(1-2)

∵AD∥BC,∴四边形GDCN是平行四边形.

∴NG?CD?BC. 同理,四边形ABNG也是平行四边形.∴AG?BN???EBC??BNM?90°. ∵MN?BE,

??MNG??BNM?90°,??EBC??MNG. ?NG?BC, 在△BCE与△NGM中

54.

??EBC??MNG,? ?BC?NG,∴△BCE≌△NGM,EC?MG. ······························5分

??C??NGM?90°.?∵AM?AG?MG,AM=54?1?14. ······························································ 6分

17

∴类比归纳

25AMBN?15·································································································· 7分 .(或

410);

917;

?n?1?22n?1············································································10分

联系拓广

nm?2n?122 ····································································································12分

n2m2?1

18

初中数学动点问题例题集 - 图文

动点问题专题训练1、如图,已知△ABC中,AB?AC?10厘米,BC?8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运
推荐度:
点击下载文档文档为doc格式
2iybg6k7d67tdil0366t
领取福利

微信扫码领取福利

微信扫码分享