动点问题专题训练
1、如图,已知△ABC中,AB?AC?10厘米,BC?8厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运B 动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
解:(1)①∵t?1秒, ∴BP?CQ?3?1?3厘米,
∵AB?10厘米,点D为AB的中点, ∴BD?5厘米. 又∵厘米,
∴PC?8?3?5厘米PC?BC?BP,BC?8, ∴PC?BD. 又∵AB?AC, ∴?B??C,
∴△BPD≌△CQP. ························································································· (4分) ②∵vP?vQ, ∴BP?CQ,
又∵△BPD≌△CQP,?B??C,则BP?PC?4,CQ?BD?5, ∴点P,点Q运动的时间t?∴vQ?CQt?543?154BP3?43A D Q P
C 秒,
厘米/秒. ············································································ (7分)
(2)设经过x秒后点P与点Q第一次相遇, 由题意,得
154x?3x?2?10,
1
解得x?803秒.
80?3?80厘米.
∴点P共运动了
3∵80?2?28?24,
∴点P、点Q在AB边上相遇, ∴经过
803秒点P与点Q第一次在边AB上相遇. ················································(12分)
34x?6与坐标轴分别交于A、B2、直线y??两点,动点P、Q同时从O点出发,
同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S?485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四
y B 边形的第四个顶点M的坐标.
解(1)A(8,0)B(0,6) ·················· 1分 (2)?OA?8,OB?6 ?AB?10
?点Q由O到A的时间是?点P的速度是
6?108P x 81?8(秒)
O Q A ?2(单位/秒) ·· 1分
当P在线段OB上运动(或0≤t≤3)时,OQ?t,OP?2t
S?t ·························································································································· 1分
2当P在线段BA上运动(或3?t≤8)时,OQ?t,AP?6?10?2t?16?2t, 如图,作PD?OA于点D,由
?S?12OQ?PD??35t?2PDBO?APAB,得PD?48?6t5, ·································· 1分
245t·················································································· 1分
(自变量取值范围写对给1分,否则不给分.)
(3)P?,?··········································································································· 1分
?55?2
?824?24???824??1224??12··························································· 3分 I1?,?,M2??,?,M3?,?? ·5??55??55??5
3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,
B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
解:(1)⊙P与x轴相切.
∵直线y=-2x-8与x轴交于A(4,0),
与y轴交于B(0,-8),
∴OA=4,OB=8.
由题意,OP=-k, ∴PB=PA=8+k.
在Rt△AOP中,k2+42=(8+k)2, ∴k=-3,∴OP等于⊙P的半径, ∴⊙P与x轴相切.
(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P
在线段OB上时,作PE⊥CD于E.
∵△PCD为正三角形,∴DE= ∴PE=33212CD=
32,PD=3,
.
∵∠AOB=∠PEB=90°, ∠ABO=∠PBE, ∴△AOB∽△PEB,
33AOABPEPB4452, PB∴?,即=3
∴PB?3152,
3152∴PO?BO?PB?8?∴P(0,∴k?3152?8), ?8.
,
3152当圆心P在线段OB延长线上时,同理可得P(0,-∴k=-315231523152-8),
-8, -8或k=-3152∴当k=-8时,以⊙P与直线l的两个交点和圆心P为顶点的三
角形是正三角形.
4(09哈尔滨) 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
解:
4
5在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分
5
D A P Q B E C 图16
PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t = 2时,AP = ,点Q到AC的距离是 ; (2)在点P从C向A运动的过程中,求△APQ的面积S与
t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成
为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. ..
解:(1)1,;
58(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴AP由△AQF∽△ABC,BC?52?32?4, 得
QF4??12t5?3?t.
.∴QF4565t?45t.
∴S即S(3?t)?252, .
B ??t?t(3)能.
①当DE∥QB时,如图4.
∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC,得即
t3?3?t5AQAC?APABE Q D A P C 图4
B ,
. 解得t?98.
Q D A P
E C ②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得 即
t5?3?t3AQAB?APAC,
. 解得t或t?4514?158图5
B .
(4)t?52.
Q G ①点P由C向A运动,DE经过点C. 连接QC,作QG⊥BC于点G,如图6.
PC?t,QC2?QC2342222?QG?CG?[(5?t)]?[4?(5?t)]55.
?52D A P C(E) B G 由PC2,得t2?[(5?t)]?[4?(5?t)]55324图6 2,解得t.
Q ②点P由A向C运动,DE经过点C,如图7.
6
A P D C(E) 图7 3445222(6?t)?[(5?t)]?[4?(5?t)],t?5514】
6如图,在Rt△ABC中,?ACB?90°,?B?60°,
BC?2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为A ?. (1)①当?? 度时,四边形EDBC是等腰梯形,此时AD的长为 ; ②当?? 度时,四边形EDBC是直角梯形,此时AD的长为 ;
(2)当??90°时,判断四边形EDBC是否为菱形,并说A 明理由.
E O ? D l C B C O B (备用图)
解(1)①30,1;②60,1.5; ????????4分 (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED.
∵CE//AB, ∴四边形EDBC是平行四边形. ????????6分 在Rt△ABC中,∠ACB=90,∠B=60,BC=2,
∴∠A=300.
∴AB=4,AC=23. ∴AO=
12AC=3 . ????????8分
0
0
在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC.
又∵四边形EDBC是平行四边形,
∴四边形EDBC是菱形 ????????10分
7如图,在梯形ABCD中,AD∥BC,AD?3,DC?5,AB?42,∠B?45?.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度A D 向终点D运动.设运动的时间为t秒. (1)求BC的长.
N (2)当MN∥AB时,求t的值.
(3)试探究:t为何值时,△MNC为等腰三角形. B C M 7
解:(1)如图①,过A、D分别作AK?BC于K,DH?BC于H,则四边形ADHK是矩形
∴KH?AD?3. ····························································································· 1分 在Rt△ABK中,AK?AB?sin45??42.22?4
BK?AB?cos45??42?22·································································· 2分 ?4 ·
在Rt△CDH中,由勾股定理得,HC? B
K (图①)
H
C
5?4?3
22∴BC?BK?KH?HC?4?3?3?10························································· 3分
A
D
A
D
N
B
C
G (图②)
M
(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形 ∵MN∥AB ∴MN∥DG ∴BG?AD?3 ∴GC?10?3?7 ························································································· 4分 由题意知,当M、N运动到t秒时,CN?t,CM?10?2t. ∵DG∥MN ∴∠NMC?∠DGC 又∠C?∠C
∴△MNC∽△GDC ∴即
CNCDt5??CMCG ································································································ 5分
10?2t750解得,t? ································································································· 6分
17(3)分三种情况讨论:
①当NC?MC时,如图③,即t?10?2t ∴t? B
103 ········································································································ 7分 A
D
N
B
(图④)
C
A
D N
M
(图③)
C 8
M H E
②当MN?NC时,如图④,过N作NE?MC于E 解法一:
由等腰三角形三线合一性质得EC?在Rt△CEN中,cosc?ECNC?125?tt?35MC?12?10?2t??5?t
又在Rt△DHC中,cosc?∴
5?tt?358CHCD
····································································································· 8分
解得t?25解法二:
∵∠C?∠C,?DHC??NEC?90? ∴△NEC∽△DHC ∴即
NCDCt5??ECHC
5?t3258
∴t? ········································································································ 8分
12NC?12t
③当MN?MC时,如图⑤,过M作MF?CN于F点.FC?解法一:(方法同②中解法一) t32cosC???
MC10?2t5FC1A D
N F
解得t?6017
B
(图⑤)
H M
解法二:
∵∠C?∠C,?MFC??DHC?90? ∴△MFC∽△DHC ∴
FCHC?MCDCC
t10?2t2?即 351∴t?6017
103综上所述,当t?
、t?258或t?6017时,△MNC为等腰三角形 ················· 9分
9
8如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB?4,BC?6,∠B?60?. (1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM?EF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EP?x. ①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由; ②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
A E B
图1 A E B
D F
B
A E P N
D F C B
A E P D N F
C
M D F C
图2
D
M 图3
C
(第25题) A
E B
图5(备用)
F C
图4(备用)
10
解(1)如图1,过点E作EG?BC于点G. 1分
∵E为AB的中点,
∴BE?12在Rt△EBG中,∠B?60?,∴∠BEG?30?.··············2分
A E B
D F
AB?2.∴BG?12BE?1,EG?2?1?22 3.G
图1
C
即点E到BC的距离为3. ···········································3分 (2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM?EF,EG?EF,∴PM∥EG. ∵EF∥BC,∴EP?GM,PM?EG?3.
同理MN?AB?4. ······························································································ 4分 如图2,过点P作PH?MN于H,∵MN∥AB, ∴∠NMC?∠B?60?,∠PMH?30?. ∴PH?12PM?32A E P H
B
N
D F C
.32. 32?522∴MH?PM?cos30??G M 图2
则NH?MN?MH?4?.
在Rt△PNH中,PN?NH?PH2??3??5?????????22????22 7.∴△PMN的周长=PM?PN?MN?3?7?4. ············································ 6分
②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角
形.
当PM?PN时,如图3,作PR?MN于R,则MR?NR. 类似①,MR?.
2∴MN?2MR?3. ································································································ 7分
3∵△MNC是等边三角形,∴MC?MN?3.
此时,x?EP?GM?BC?BG?MC?6?1?3?2. ········································· 8分 A E B
P R
G
M
图3
C
B
G
图4
11
D N F
A E P
D F N C
B
A E D F(P) N
M G
图5
M
C
当MP?MN时,如图4,这时MC?MN?MP?此时,x?EP?GM?6?1?3?5?3.
3.
当NP?NM时,如图5,∠NPM?∠PMN?30?. 则∠PMN?120?,又∠MNC?60?, ∴∠PNM?∠MNC?180?.
因此点P与F重合,△PMC为直角三角形.
∴MC?PM?tan30??1. 此时,x?EP?GM?6?1?1?4. 综上所述,当x?2或4或5??·······················10分 3时,△PMN为等腰三角形. ·
?9如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,
同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,
设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.
解:(1)Q(1,0) ····································································································· 1分 点P运动速度每秒钟1个单位长度. ·························································································································· 2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF ∴AF?10?4?6.
?BE?4.
y 在Rt△AFB中,AB?82?62?10 3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵?ABC?90?,AB?BC ∴△ABF≌△BCH.
12
AMFONDCPHGxBQE ∴BH?AF?6,CH?BF?8.
∴OG?FH?8?6?14,CG?8?4?12. ∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴
APAB?AMAF35?MPBF. ?45tt10?AM6?MP8.
35t,ON?PM?45t ∴AM?t,PM?. ∴PN?OM?10?.
设△OPQ的面积为S(平方单位) ∴S?12?(10?35t)(1?t)?5?4710t?310t2(0≤t≤10) ························································ 5分
说明:未注明自变量的取值范围不扣分.
47310 ∵a??<0 ∴当t??102?(?310)?476时, △OPQ的面积最大. ····························· 6分
此时P的坐标为((4) 当
t?539415?,
295135310) . ················································································ 7分
或t时, OP与PQ相等. ························································ 9分
10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E
?是边BC的中点.且EF交正方形外角?DCG的平行线CF于点F,?AEF?90,
求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE?EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
A D
F
A
D
F
F A
D
B E C 图1
G
B
E C 图2
G B 图3
C E G
13
解:(1)正确. (1分)
A M B E
C D
F G
证明:在AB上取一点M,使AM?EC,连接ME. (2分) ?BM?BE.??BME?45°,??AME?135°. ?CF是外角平分线, ??DCF?45°,
??ECF?135°. ??AME??ECF.
??AEB??BAE?90°,?AEB??CEF?90°,
??BAE??CEF.
?△AME≌△BCF(ASA). ············································································· (5分)
······································································································ (6分) ?AE?EF. ·
(2)正确. ····························································· (7分) 证明:在BA的延长线上取一点N. 使AN?CE,连接NE. ········································ (8分)
?BN?BE.
??N??PCE?45°.
N A D
F ?四边形ABCD是正方形, ?AD∥BE. ??DAE??BEA.
B C E G
??NAE??CEF.
?△ANE≌△ECF(ASA). ·············································································(10分)
····································································································· (11分) ?AE?EF. ·
11已知一个直角三角形纸片OAB,其中?AOB?90°,OA?2,OB?4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标; y
B
x O A (Ⅱ)若折叠后点B落在边OA上的点为B?,设OB??x,OC?y,试写出y关于x的函数解析式,并确定y的取值范围;
B y x O A
(Ⅲ)若折叠后点B落在边OA上的点为B?,且使B?D∥OB,求此时点C的坐标. y
B 14
O A x 解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.
设点C的坐标为?0,m??m?0?. 则BC?OB?OC?4?m. 于是AC?BC?4?m.
在Rt△AOC中,由勾股定理,得AC2?OC2?OA2, 即?4?m??m?2,解得m?22232.
?3?点C的坐标为?0,?2?······························································································ 4分 ?. ·?(Ⅱ)如图②,折叠后点B落在OA边上的点为B?, 则△B?CD≌△BCD. 由题设OB??x,OC?y, 则B?C?BC?OB?OC?4?y,
在Rt△B?OC中,由勾股定理,得B?C2?OC2?OB?2.
??4?y??y?x,
222即y??18x?2 ·········································································································· 6分
2由点B?在边OA上,有0≤x≤2,
? 解析式y??18x?2?0≤x≤2?为所求.
2? ?当0≤x≤2时,y随x的增大而减小, ?y的取值范围为
32≤y≤2.················································································ 7分
(Ⅲ)如图③,折叠后点B落在OA边上的点为B??,且B??D∥OB. 则?OCB????CB??D.
??OCB????CBD,有CB??∥BA. 又??CBD??CB??D,?Rt△COB??∽Rt△BOA.
有
OB??OAOB在Rt△B??OC中,
?OC,得OC?2OB??. ············································································ 9分
设OB???x0?x?0?,则OC?2x0. 由(Ⅱ)的结论,得2x0??18x20?2,
?x0?0,?x0??8?45. 解得x0??8?45.15
·············································································10分 85?16. ·?点C的坐标为0,??12问题解决 F
M 如图(1),将正方形纸片ABCD折叠,使点B落在CD边A 上一点E(不与点C,D重合),压平后得到折痕MN.当
CECD?12D
时,求
AMBN的值.
B E
方法指导:
为了求得AM的值,可先求BN、AM的长,不妨设:AB=2
BN
类比归纳
在图(1)中,若
CECDCECD??131,则
AMBNN
图(1)
C
的值等于 ;若
AMBNCECD?14,则
AMBN的
值等于 ;若
n的式子表示)
n(n为整数),则的值等于 .(用含
联系拓广
如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN,设
ABBC?1m?mCE1AM?1?,?,则
CDnBN的值等
于 .(用含m,n的式子表示)
解:方法一:如图(1-1),连接BM,EM,BE.
F M A D
B
N 图(1-1)
16
F A M D E
B
N
图(2)
C
E
C
由题设,得四边形ABNM和四边形FENM关于直线MN对称.
∴MN垂直平分BE.∴BM?EM,BN?EN.············································ 1分 ∵四边形ABCD是正方形,∴?A??D??C?90°,AB?BC?CD?DA?2. ∵CECD?12设BN?x,则NE?x,NC?2?x. ,?CE?DE?1. 在Rt△CNE中,NE2?CN2?CE2. ∴x2??2?x??12.解得x?254,即BN?54 ················································ 3分 . 在Rt△ABM和在Rt△DEM中,
222AM?AB?BM, 222DM?DE?EM,
2222 ······································································· 5分 ?AM?AB?DM?DE. 设AM?y,则DM?2?y,∴y?2??2?y??1.
2222 解得y? ∴AMBN?1415,即AM?14. ················································································ 6分
. ··································································································· 7分
54. ·········································································· 3分
方法二:同方法一,BN? 如图(1-2),过点N做NG∥CD,交AD于点G,连接BE.
F M G A D
E
B C N
图(1-2)
∵AD∥BC,∴四边形GDCN是平行四边形.
∴NG?CD?BC. 同理,四边形ABNG也是平行四边形.∴AG?BN???EBC??BNM?90°. ∵MN?BE,
??MNG??BNM?90°,??EBC??MNG. ?NG?BC, 在△BCE与△NGM中
54.
??EBC??MNG,? ?BC?NG,∴△BCE≌△NGM,EC?MG. ······························5分
??C??NGM?90°.?∵AM?AG?MG,AM=54?1?14. ······························································ 6分
17
∴类比归纳
25AMBN?15·································································································· 7分 .(或
410);
917;
?n?1?22n?1············································································10分
联系拓广
nm?2n?122 ····································································································12分
n2m2?1
18