2024-2024备战中考数学综合题专题复习【相似】专题解析附详细答案
一、相似
1.在△ABC中,∠ABC=90°.
(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;
(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=
,求tanC的值;
,直
(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= , 接写出tan∠CEB的值.
【答案】(1)解:∵AM⊥MN,CN⊥MN, ∴∠AMB=∠BNC=90°, ∴∠BAM+∠ABM=90°, ∵∠ABC=90°, ∴∠ABM+∠CBN=90°, ∴∠BAM=∠CBN, ∵∠AMB=∠NBC, ∴△ABM∽△BCN
(2)解:如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.
∵∠BAP+∠1=∠CPM+∠1=90°, ∴∠BAP=∠CPM=∠C, ∴MP=MC ∵tan∠PAC=设MN=2m,PN=
m,
,
根据勾股定理得,PM=∴tanC=
,
(3)解:在Rt△ABC中,sin∠BAC= = ,
过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,
∵∠DEB=90°, ∴CH∥AG∥DE, ∴
=
同(1)的方法得,△ABG∽△BCH ∴
∵AB=AE,AG⊥BE, ∴EG=BG=4m, ∴GH=BG+BH=4m+3n, ∴ ∴n=2m,
∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m, 在Rt△CEH中,tan∠BEC= =
【解析】【分析】(1)根据垂直的定义得出∠AMB=∠BNC=90°,根据同角的余角相等得出∠BAM=∠CBN,利用两个角对应相等的两个三角形相似得出:△ABM∽△BCN; (2)过点P作PF⊥AP交AC于F,在Rt△AFP中根据正切函数的定义,由
,
,
设BG=4m,CH=3m,AG=4n,BH=3n,
tan∠PAC=AB=
a,PQ=2a,BP=
,同(1)的方法得,△ABP∽△PQF,故,设
b,FQ=2b(a>0,b>0),然后判断出△ABP∽△CQF,得
从而表示出CQ,进根据线段的和差表示出BC,再判断出△ABP∽△CBA,得出
再得出BC,从而列出方程,表示出BC,AB,在Rt△ABC中,根据正切函数的定义
得出tanC的值;
(3)在Rt△ABC中,利用正弦函数的定义得出:sin∠BAC=
,过点A作AG⊥BE于
G,过点C作CH⊥BE交EB的延长线于H,根据平行线分线段成比例定理得出
, 同(1)的方法得,△ABG∽△BCH ,故
, 设BG=4m,
CH=3m,AG=4n,BH=3n,根据等腰三角形的三线合一得出EG=BG=4m,故GH=BG+BH=4m+3n,根据比例式列出方程,求解得出n与m的关系,进而得出EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中根据正切函数的定义得出tan∠BEC的值。
2.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.
(1)求点C的坐标(用含a的代数式表示);
(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;
(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标. 【答案】 (1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1, 而抛物线与x轴的一个交点A的坐标为(﹣1,0) ∴抛物线与x轴的另一个交点B的坐标为(3,0) 设抛物线解析式为y=a(x+1)(x﹣3), 即y=ax2﹣2ax﹣3a, 当x=0时,y=﹣3a, ∴C(0,﹣3a)
(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a), ∴AB=4,OC=3a, ∴S△ACB= AB?OC=6, ∴6a=6,解得a=1,
∴抛物线解析式为y=x2﹣2x﹣3
(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,
∵点G与点C,点F与点A关于点Q成中心对称, ∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3, ∴OF=2m+1,HF=1, 当∠CGF=90°时,
∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°, ∴∠GQH=∠HGF, ∴Rt△QGH∽Rt△GFH, ∴ = ,即 当∠CFG=90°时,
∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°, ∴∠CFO=∠FGH, ∴Rt△GFH∽Rt△FCO, ∴ = ,即 ∠GCF=90°不存在,
综上所述,点Q的坐标为(4,0)或(9,0).
【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;
(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB?OC=6可求得a的值,则解析式可求解;
(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。分两种情况讨论:①当∠CGF=90°时,由同角的余角相等可得∠GQH=∠HGF,于是根据有两个角相等的两个三角形相似可得Rt△QGH∽Rt△GFH,则可得比例式解;
, 代入可求得m的值,则点Q的坐标可求
= ,解得m=4, ,解得m=9,
∴Q的坐标为(9,0);
∴Q的坐标为(4,0);
②当∠CFG=90°时,同理可得另一个Q坐标。
3.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.
(1)①求证:AP=CQ;②求证:PA2=AF?AD; (2)若AP:PC=1:3,求tan∠CBQ.
【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,
∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90° ∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;
②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°, ∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ, 由①得△ABP≌△CBQ,∠ABP=∠CBQ
∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,
(本题也可以连接PD,证△APF∽△ADP)
(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°, ∵∠ACB=45°,∴∠PCQ=45°+45°=90° ∴tan∠CPQ= , 由①得AP=CQ,
又AP:PC=1:3,∴tan∠CPQ= 由②得∠CBQ=∠CPQ, ∴tan∠CBQ=tan∠CPQ= .
【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证; (2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答案.
,