统计专业和数学专业数学分练习题
第9章
习题9-1
1. 判定下列级数的收敛性:
?1(1) ?5?n(a>0); (2) ?(n?1?n);
an?1n?1??2?(?1)n1(3) ?; (4) ?; n2n?1n?1n?3??nn(5) ?ln; (6) ?(?1)2;
n?1n?1n?1?(?1)n?nn?1(7) ?; (8) ?.
n?02n?1n?1n??解:(1)该级数为等比级数,公比为
11,且a?0,故当||?1,即a?1时,级数收敛,当aa|1|?1即0?a?1时,级数发散. a (2)
Sn?(2?1)?(3?2)?n?1?1
?(n?1?n)
?n?? limSn??
?
?(n?1?n?1?n)发散.
??111(3)?是调和级数?去掉前3项得到的级数,而调和级数?发散,故原
n?1nn?1nn?1n?3??级数
?n?3发散.
n?11(4)
2?(?1)n??1(?1)n????n?1?n? ?n22?n?1n?1?2??(?1)m11而?n?1,?是公比分别为的收敛的等比级数,所以由数项级数的基本性质n222n?1n?1?页脚内容
1
统计专业和数学专业数学分练习题
?1(?1)n?知??n?1?收敛,即原级数收敛. n?2?n?1?2?(5)
lnn?lnn?ln(n?1) n?1[lnn?ln(n?1)]
于是Sn?(ln1?ln2)?(ln2?ln3)? ?ln1?ln(n?1)??ln(n?1) 故limSn???,所以级数
n???lnn?1?n发散. n?1 (6)
S2n?0,S2n?1??2
? limSn不存在,从而级数
n???(?1)n?1?n2发散.
(7)
limUn?limn???n?1?1?0
n??n ? 级数
n?1发散. ?nn?1(?1)nn(?1)nn1(8) Un?, lim?
n??2n?12n?12(?1)nn ? limUn?0,故级数?发散.
x??2n?1n?1?2. 判别下列级数的收敛性,若收敛则求其和:
?1?1?1 ※
(1) ??n?n?; (2) ?;
23n(n?1)(n?2)?n?1?n?1?nππ(3) ?n?sin; (4) ?cos.
2n2n?0n?1????111?11?解:(1)?n, ?n都收敛,且其和分别为1和,则??n?n?收敛,且其
3?2n?12n?13n?1?2?和为1+
13=. 2211?121??????
n(n?1)(n?2)2?nn?1n?2?(2)
页脚内容
2
统计专业和数学专业数学分练习题
?Sn?1?21?1?121?1?121??1??????????????2?23?2?234?2?345?1?121?????? 2?nn?1n?2?1?111?????? 2?2n?1n?2?limSn?n??11故级数收敛,且其和为. 44π?ππππ2(3)Un?nsin,而limUn?lim?发散. ??0,故级数?n?sinn??n??π2n2n22n?12nnπ(4)Un?cos,而limU4k?limcos2kπ?1,limU4k?2?limcos(2k?1)π??1
k??k??k??k??2sin故limUn不存在,所以级数
n????cosn?0?nπ发散. 23. 设
※
?Un?1?nn (Un>0)加括号后收敛,证明
?Un?1?n亦收敛.
证:设
?Un?1(Un?0)加括号后级数?An收敛,其和为S.考虑原级数?Un的部分和
n?1n?1??Sn??Uk,并注意到Uk?0(k?1,2,),故存在n0,使
k?1?Sn??Uk??At?s
k?1t?1?n0又显然Sn?Sn?1对一切n成立,于是,{Sn}是单调递增且有上界的数列,因此,极限limSnn??存在,即原级数
?Un?1?n亦收敛.
习题9-2
1. 判定下列正项级数的收敛性:
?1n(1) ?; (2) ?;
n?1n?1(n?1)(n?2)n?1??n?21(3) ?; (4) ?;
2n(n?2)n?1n?1n(n?5)?页脚内容
3
统计专业和数学专业数学分练习题
?11(5) ? (a>0); (6) (a, b>0); ?nnn?11?an?1a?b?(7)
??n?n?1?2?a?n?a (a>0); (8) ?2?n?1; 42n?1n?1??3nnn ※
(9) ?; (10) ?; nn?2n!n?1n?1?3?5?7???(2n?1)n(11) ?; (12) ?n;
n?14?7?10???(3n?1)n?13??(n!)2?n?(13) ?n2; (14) ???;
n?12n?1?2n?1?? ※
n(15)
?2n?1?nsinπ3nncos2; (16) ?2nn?1?nπ3.
??1111?2而?2收敛,由比较判别法知级数?解:(1)因为收
(n?1)(n?2)n(n?1)(n?2)nn?1n?1敛.
(2)因为limUn?limn??n??n?1?0,故原级数发散. n?1?1n?2n1?? (3)因为,而?发散,由比较判别法知,级数
n?1n(n?1)n(n?1)n?1n?1n?2发散. ?n?1n(n?1)(4)因为?1n(n2?5)?1n?n2?1n32,而
?n?1?1n(n2?5)是收敛的p级数(p??3?1),2由比较判别法知,级数
?n?1?1n(n?5)2收敛.
1nan11?a(5)因为lim?lim?lim(1?)
n??n??1?ann??11?anan页脚内容
4
统计专业和数学专业数学分练习题
a?1?1?1? ??a?1
?2??00?a?1?11而当a?1时,?n收敛,故?收敛; na1?an?1n?1??11 当a?1时,?n= ?1发散,故?发散; nn?1n?1an?11?a??11,故发散; ?1?0limn??1?ann??1?an11综上所述,当0?a?1时,级数lim发散,当时,收敛. lima?1n??1?ann??1?an1nbnaa?b (6)因为lim?lim?lim(1?) nn??n??a?bnn??1a?bnb 当0?a?1时limb?1?1?1???b?1 ?a?10?b?1??0?11而当b?1时, ?n收敛,故?收敛; na?bbn?1n?1??111 当b?1时,?n??1发散,故而由a?0, 0?也发散; ???,故?na?1n?1a?bn?1bn?1?111 当0?b?1时,lim故发散; ??0?nn??a?bna?ban?1?11综上所述知,当0?b?1时,级数?发散;当b>1时,级数收敛. ?nnn?1a?bn?1a?b???n2?a?n2?a2an?lim (7)因为lim 22n??n??1n?a?n?an ?lim2a1?aa?1?n2n2n???a?0
页脚内容
5