cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 正切定理:
[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h
-----------------------三角函数 积化和差 和差化积公式 记不住就自己推,用两角和差的正余弦: cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
这两式相加或相减,可以得到2组积化和差: 相加:cosAcosB=[cos(A+B)+cos(A-B)]/2 相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2
sin(A+B)=sinAcosB+sinBcosA sin(A-B)=sinAcosB-sinBcosA
这两式相加或相减,可以得到2组积化和差: 相加:sinAcosB=[sin(A+B)+sin(A-B)]/2
相减:sinBcosA=[sin(A+B)-sin(A-B)]/2
这样一共4组积化和差,然后倒过来就是和差化积了
不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下 正加正 正在前 正减正 余在前 余加余 都是余 余减余 没有余还负
正余正加 余正正减 余余余加 正正余减还负 .
3.三角形中的一些结论:(不要求记忆) (1)anA+tanB+tanC=tanA·tanB·tanC
(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2) (3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1 (4)sin2A+sin2B+sin2C=4sinA·sinB·sinC (5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................
已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ 解:sinα=m sin(α+2β) sin(a+β-β)=msin(a+β+β)
sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ
sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ
高中三角函数公式大全
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)