第2讲 动量守恒定律及“三类模型”问题
一、动量守恒定律 1.内容
如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变. 2.表达式
(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.
(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.
(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向. (4)Δp=0,系统总动量的增量为零. 3.适用条件
(1)理想守恒:不受外力或所受外力的合力为零.
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.
(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.
自测1 关于系统动量守恒的条件,下列说法正确的是( ) A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统动量就不守恒 C.只要系统所受的合外力为零,系统动量就守恒
D.系统中所有物体的加速度为零时,系统的总动量不一定守恒 [参考答案]C
二、“三类”模型问题 1.“子弹打木块”模型
(1)“木块”放置在光滑的水平面上
①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”在滑动摩擦力作用下做匀加速直线运动.
②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为在这一过程中动量守恒.把“子弹”和“木块”看成一个系统:a.系统水平方向动量守恒;b.系统的机械能不守恒;c.对“木块”和“子弹”分别应用动能定理. (2)“木块”固定在水平面上
2
①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”静止不动. ②处理方法:对“子弹”应用动能定理或牛顿第二定律. 2.“反冲”和“爆炸”模型 (1)反冲
①定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.
②特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、发射火箭等.
③规律:遵从动量守恒定律. (2)爆炸问题
爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.如爆竹爆炸等. 3.“人船模型”问题 (1)模型介绍
两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题即为“人船模型”问题. (2)模型特点
①两物体满足动量守恒定律:m1v1-m2v2=0.
②运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的x1v1m2反比;人船平均速度(瞬时速度)比等于它们质量的反比,即==.
x2v2m1x1v1m2
③应用==时要注意:v1、v2和x1、x2一般都是相对地面而言的.
x2v2m1
自测2 如图1所示,长为L、质量为m船的小船停在静水中,质量为m人的人由静止开始从船的一端走到船的另一端,不计水的阻力.则船和人相对地面的位移各为多少?
图1
m人m船
[参考答案]L L
m人+m船m人+m船
[试题解析] 以人和船组成的系统为研究对象,在人由船的一端走到船的另一端的过程中,系统水平方向不受外力作用,所以整个系统水平方向动量守恒,可得m船v船=m人v人,因人和船组成的系统,动量始终守恒,故有m船x船=m人x人,由题图可看出,x船+x人=L,可解得 m船m人
x人=L,x船=L.
m人+m船m人+m船
2
题型1 动量守恒的理解
例1 如图2所示,A、B两物体的质量之比为mA∶mB=1∶2,它们原来静止在平板车C上,A、B两物体间有一根被压缩了的水平轻质弹簧,A、B两物体与平板车上表面间的动摩擦因数相同,水平地面光滑.当弹簧突然释放后,A、B两物体被弹开(A、B两物体始终不滑出平板车),则有( )
图2
A.A、B系统动量守恒
B.A、B、C及弹簧组成的系统机械能守恒 C.小车C先向左运动后向右运动 D.小车C一直向右运动直到静止 [参考答案]D
[试题解析] A、B两物体和弹簧、小车C组成的系统所受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,因mA∶mB=1∶2,由摩擦力公式Ff=μFN=μmg知,A、B两物体所受的摩擦力大小不等,所以A、B两物体组成的系统合外力不为零,A、B两物体组成的系统动量不守恒,A物体对小车向左的滑动摩擦力小于B对小车向右的滑动摩擦力,在A、B两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动,因滑动摩擦力做负功,则系统的机械能不守恒,最终整个系统将静止,故A、B、C错误,D正确.
变式1 (多选)如图3所示,小车在光滑水平面上向左匀速运动,水平轻质弹簧左端固定在A点,物体与固定在A点的细线相连,弹簧处于压缩状态(物体与弹簧未连接),某时刻细线断了,物体沿车滑动到B端粘在B端的油泥上,取小车、物体和弹簧为一个系统,下列说法正确的是( )
图3
A.若物体滑动中不受摩擦力,则该系统全过程机械能守恒 B.若物体滑动中有摩擦力,则该系统全过程动量守恒 C.不论物体滑动中有没有摩擦,小车的最终速度与断线前相同 D.不论物体滑动中有没有摩擦,系统损失的机械能相同
2
[参考答案]BCD
[试题解析] 物体与油泥粘合的过程,发生非弹性碰撞,系统机械能有损失,故A错误;整个系统在水平方向不受外力,竖直方向上合外力为零,则系统动量一直守恒,故B正确;取系统的初速度方向为正方向,根据动量守恒定律可知,物体在沿车滑动到B端粘在B端的油泥上后系统共同的速度与初速度是相同的,故C正确;由C的分析可知,当物体与B端油泥粘在一起时,系统的速度与初速度相等,所以系统的末动能与初动能是相等的,系统损失的机械能等于弹簧的弹性势能,与物体滑动中有没有摩擦无关,故D正确.
题型2 动量守恒定律的基本应用
例2 (多选)如图4所示,一质量M=3.0 kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0 kg的小木块A,同时给A和B以大小均为4.0 m/s,方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B板,在小木块A做加速运动的时间内,木板速度大小可能是( )
图4
A.2.1 m/s C.2.8 m/s [参考答案]AB
[试题解析] 以A、B组成的系统为研究对象,系统动量守恒,取水平向右为正方向,从A开始运动到A的速度为零过程中,由动量守恒定律得(M-m)v=MvB1,代入数据解得vB1≈2.67 m/s.当从开始到A、B速度相同的过程中,取水平向右为正方向,由动量守恒定律得(M-m)v= (M+m)vB2,代入数据解得vB2=2 m/s,则在木块A做加速运动的时间内,B的速度范围为 2 m/s<vB<2.67 m/s,故选项A、B正确.
变式2 一质量为M的航天器远离太阳和行星,正以速度v0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出质量为m的气体,气体向后喷出的速度大小为v1,加速后航天器的速度大小v2等于(v0、v1、v2均为相对同一参考系的速度)( ) ?M+m?v0-mv1A.
MMv0+mv1C.
M-m[参考答案]C
[试题解析] 以v0的方向为正方向,由动量守恒定律有Mv0=-mv1+(M-m)v2 Mv0+mv1
解得v2=,故选C.
M-m
?M+m?v0+mv1B.
MMv0-mv1D. M-mB.2.4 m/s D.3.0 m/s
2
1.木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒. 2.两者发生的相对位移为子弹射入的深度x相.
3.根据能量守恒定律,系统损失的动能等于系统增加的内能. 4.系统产生的内能Q=Ff·x
相
,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等
于摩擦力大小与两物体相对滑动的路程的乘积.
5.当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔEk=Ff·L(L为木块的长度).
【例3】 (多选)(2019·河北唐山市第一次模拟)如图5,一子弹以初速度v0击中静止在光滑的水平面上的木块,最终子弹未能射穿木块,射入的深度为d,木块加速运动的位移为s.则以下说法正确的是( )
图5
A.子弹动能的亏损等于系统动能的亏损
B.子弹动量变化量的大小等于木块动量变化量的大小 C.摩擦力对木块做的功等于摩擦力对子弹做的功 D.子弹对木块做的功等于木块动能的增量 [参考答案]BD
[试题解析] 子弹射入木块的过程,要产生内能,由能量守恒定律知子弹动能的亏损大于系统动能的亏损,故A错误;子弹和木块组成的系统动量守恒,系统动量的变化量为零,则子弹与木块动量变化量大小相等,方向相反,故B正确;摩擦力对木块做的功为Ffs,摩擦力对子弹做的功为-Ff (s+d),可知二者不等,故C错误;对木块根据动能定理可知:子弹对木块做的功即为摩擦力对木块的功,等于木块动能的增量,故选项D正确.
【变式3】 (2019·四川第二次诊断)如图6甲所示,一块长度为L、质量为m的木块静止在光滑水平面上.一颗质量也为m的子弹以水平速度v0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为( )
图6
2