习题7-1
1. 已知函数f(x,y)?x2?y2?xytanx,试求f(tx,ty). ytx22x?t(x?y2?xytan)?t2f(x,y). tyy解 f(tx,ty)??tx???ty???tx??ty?tan222. 已知函数f(x,y)?(x?y)x?y,求f(2,3),f?x?y,y?.
解 f(2,3)=,15f?x?y,y?=(x?2y)x.
3. 已知f(x?y,y)?x2?y2,求f?x,y?. xyuuv解 令x?y?u , ?v?x?,则 , y?x1?v1?v2?u??uv?u?1?v?, f(u,v)???????1?v1?v1?v????22x2(1?y)y?? , (y??1). 故 f?x,1?y4. 求下列各函数的定义域,并画出定义域的图形:
(1)z?ln(xy); (2)z?arcsin(3?x2?y3)x?y2;
x2y2(3)z?ln(y?x)?; (4)z?1?2?2;
22ab1?x?yx(5)u?R2?x2?y2?z2?1x?y?z?r2222(R>r>0);
解 (1)(x,y)x?0,y?0或x?0,y?0;
(2)(x,y)2?x?y?4,x?y2???222?;
2(3)y?x?0,x?0且1?x?y?0,故函数的定义域为,
D??(x,y)y?x?0,x2?y2?1?.
??x2y2??(4)?(x,y)2?2?1?.
ab????(5)R?x?y?z?0且x?y?z?r?0,故函数的定义域为
1
22222222D??(x,y,z)r2?x2?y2?z2?R2?.
5. 求下列各极限: (1)limx?0y?12?xy?41?xy; (2); limx?0xyx2?y2y?01?cos(x2?y2)sin(xy)(3)lim; (4)lim; 222x2y2x?0x?2xyy?0(x?y)ey?0解 (1)limx?0y?11?xy=1; 22x?y(2)lim2?xy?4?xy?11=lim=lim=?;
x?0x?0xy?02+xy?4xy4(2+xy?4)xy?0y?0y?0(3)lim?1sin(xy)?1sin(xy)?lim???2 2x?2x?2?xxyxy?y?0y?0?1?cos(x2?y2)(x?y)e22x2y2(4)limx?0y?0?limx?0y?01ex22y1?cost2t4?lim?1?lim2?0 2t?0t?02tt6. 从limf(x,0)?0,limf(x,x?0x?012x)?,能否断定limf(x,y)不存在?
x?025y?0x?0y?0答 因为函数f(x,y)沿不同路径的极限不相等,所以极限limf(x,y)不存在.
y2?2x7. 函数z?2在何处是间断的?
y?2x2解 为了使函数的表达式有意义,需要y?2x?0,所以曲线y?2x?0上的点均
2y2?2x是函数z?2的间断点.
y?2x8. 证明:极限limx?y不存在。
x?0x?yy?0x?yx?lim=1;当点P(x,y)沿y轴x?yx?0x证 当点P(x,y)沿x轴?(0,0)时,limx?0y?0?(0,0)时,lim
x?yyx?y极限不存在. ?lim??1,所以limy?0x?yy?0?yx?0x?yx?0y?02