2020高考数学函数与导数参数与分类讨论大题精做理科
1.已知函数f?x??kx?1(k?R,k?0). kekx(1)讨论函数f?x?的单调性;
?x?(2)当x?1时,f???lnx,求k的取值范围.
?k?
2.已知函数f?x??lnx??a?2?x2?ax?a?R?. (1)求函数f?x?的单调区间;
(2)若对任意x??0,???,函数f?x?的图像不在x轴上方,求a的取值范围.
3.已知函数f?x??x?ex?1??a?ex?1?.
(1)若曲线y?f?x?在点?1,f?1??处切线的斜率为1,求实数a的值; (2)当x??0,???时,f?x??0恒成立,求实数a的取值范围.
4.已知函数f?x??1?x?axlnx. (1)求f?x?在?1,???上的最值; (2)设g?x??
11.【答案】(1)见解析;(2)k?0或k?.
ef?x?x?1,若当0?a?1,且x?0时,g?x??m,求整数m的最小值.
2???kx?kxkx??1ke??kx?1?ke2?kxk??【解析】(1)f??x???, ?kx?kxkx2kee?e?2?2???①若k?0,当x????,?时,f??x??0,f?x?在???,?上单调递增;
k?k????2??2?当x??,???时,f??x??0,f?x?在?,???上单调递减.
?k??k?2?2???②若k?0,当x????,?时,f??x??0,f?x?在???,?上单调递减;
k?k????2??2?当x??,???时,f??x??0,f?x?在?,???上单调递增.
?k??k?2???2?∴当k?0时,f?x?在???,?上单调递增,在?,???上单调递减;
k???k?2???2?当k?0时,f?x?在???,?上单调递减,在?,???上单调递增.
k???k??x?x?1(2)f???x?lnx?x?1?,
?k?ke当k?0时,上不等式成立,满足题设条件;
x?1?x?x?1当k?0时,f???x?lnx,等价于x?klnx?0,
e?k?ke2?xk2x?x2?kexx?1设g?x??x?klnx?x?1?,则g??x??x??, xexxee设h?x??2x?x2?kex?x?1?,则h??x??2?1?x??kex?0, ∴h?x?在?1,???上单调递减,得h?x??h?1??1?ke. 1①当1?ke?0,即k?时,得h?x??0,g??x??0,
e∴g?x?在?1,???上单调递减,得g?x??g?1??0,满足题设条件; ②当1?ke?0,即0?k?1时,h?1??0,而h?2???ke2?0, e∴?x0??1,2?,h?x0??0,
又h?x?单调递减,∴当x??1,x0?,h?x??0,得g'?x??0, ∴g?x?在?1,x0?上单调递增,得g?x??g?1??0,不满足题设条件; 1综上所述,k?0或k?.
e2.【答案】(1)见解析;(2)??1,???. 【解析】(1)函数f?x?的定义域为?0,???,
?2x?1??2?a?2?x2?ax?11??a?2?x?1??. f??x???2?a?2?x?a????xxx当a??2时,f??x??0恒成立,函数f?x?的单调递增区间为?0,???; 当a??2时,由f??x??0,得x?则由f??x??0,得0?x?11或x??(舍去), a?2211;由f??x??0,得x?, a?2a?21???1?,???. 所以f?x?的单调递增区间为?0,,单调递减区间为???a?2??a?2?(2)对任意x??0,???,函数f?x?的图像不在x轴上方,等价于对任意x??0,???,都有
f?x??0恒成立,即在?0,???上f?x?max?0. 由(1)知,当a??2时,f?x?在?0,???上是增函数,