1?1?因为,f??x?在?,???上单调增,所以当?x?x2时,f??x??0,f?x?单
2?2?调减,x?x2时,f?x?单调增,因此x2是f?x?的极小值点. 所以,f?x?有唯一的极大值点x0.
1??由前面的证明可知,x0??e?2,?,则f?x0??fe?2?e?4?e?2?e?2.
2????因为f??x0??2x0?2?lnx0?0,所以lnx0?2x0?2,则 又f?x0??x02?x0?x0?2x0?2??x0?x02,因为0?x0?因此,e?2?f?x0??22.
11,所以f?x0??. 241. 4?0?,P??,?? 【解析】⑴设M??0,则OM??0,|OP|??. ???0?16???0cos?0?4 ????0?解得??4cos?,化为直角坐标系方程为
?x?2?2?y2?4.?x?0?
⑵连接AC,易知△AOC为正三角形. |OA|为定值.
∴当高最大时,S△AOB面积最大,
如图,过圆心C作AO垂线,交AO于H点 交圆C于B点, 此时S△AOB最大
1Smax?|AO|?|HB|
21?|AO|?|HC|?|BC|? 2?3?2
23.
【解析】⑴由柯西不等式得:?a?b??a5?b5?≥?a?a5?b?b5?2?a3?b3??2?4
当且仅当ab5?ba5,即a?b?1时取等号. ⑵∵a3?b3?2
∴?a?b?a2?ab?b2?2
2∴?a?b?????b??3ab??2
????∴?a?b??3ab?a?b??2
3?a?b??2?ab∴
3?a?b?32a?b??2??a?b??ab≤?由均值不等式可得:? 3?a?b?2??3?a?b??2≤?a?b?2∴?2? 3?a?b???33?a?b?3∴?a?b??2≤
3413?a?b?≤2 4∴a?b≤2 当且仅当a?b?1时等号成立.
∴
2017年普通高等学校招生全国统一考试数学试题理(全国卷2,参考解析)



