∵S△ABC?2, 1∴ac?sinB?2, 218∴ac??2, 217∴ac?17, 215, 17∵cosB?a2?c2?b215?, ∴
2ac17∴a2?c2?b2?15,
∴(a?c)2?2ac?b2?15, ∴36?17?b2?15, ∴b?2.
18. 【解析】(1)记:“旧养殖法的箱产量低于50kg” 为事件B
“新养殖法的箱产量不低于50kg”为事件C
而P?B??0.040?5?0.034?5?0.024?5?0.014?5?0.012?5
?0.62
P?C??0.068?5?0.046?5?0.010?5?0.008?5
?0.66
P?A??P?B?P?C??0.4092 (2)
旧养殖法 新养殖法 由计算可得K2的观测值为
箱产量?50kg 62 34 箱产量≥50kg 38 66 k2?200??62?66?38?34?100?100?96?1042?15.705
∵15.705?6.635 ∴P?K2≥6.635??0.001
∴有99%以上的把握产量的养殖方法有关.
(3)1?5?0.2,0.2??0.004?0.020?0.044??0.032
88,?5≈2.35 171750?2.35?52.35,∴中位数为52.35. 0.032?0.068?
19.【解析】
zPFMM'OEABCD y
x(1)令PA中点为F,连结EF,BF,CE.
1∵E,F为PD,PA中点,∴EF为△PAD的中位线,∴EF∥AD.
2又∵?BAD??ABC?90?,∴BC∥AD.
11AD,∴BC∥AD,∴EF∥BC. 22∴四边形BCEF为平行四边形,∴CE∥BF. 又∵BF?面PAB,∴CE∥面PAB
又∵AB?BC?(2)以AD中点O为原点,如图建立空间直角坐标系.
设AB?BC?1,则O(0,0,0),A(0,?1,0),B(1,?1,0),C(1,0,0),D(0,1,0),
P(0,0,3).
M在底面ABCD上的投影为M?,∴MM??BM?.∵?MBM??45?,
∴△MBM?为等腰直角三角形.
∵△POC为直角三角形,OC?设MM??a,CM??23OP,∴?PCO?60?. 3??333??a,OM?1?a.∴M??1?3a,0,0??. 33???3?1263222??1?BM???a?1?0?a?1?a?a?.∴. OMa?1???3?3232?????226?1?,0,0∴M??,M1?,0,??????? 222????uuuur?rur26?uuuAB?(1,0,0)m?(0,y1,z1). ,.设平面的法向量AM??1?,1,ABM???22??ur6y1?z1?0,∴m?(0,?6,2)
2uuuruuurrAD?(0,2,0),AB?(1,0,0).设平面ABD的法向量为n?(0,0,z2), rn?(0,0,1).
urrurrm?n10∴cos?m,n??u. rr?5m?n∴二面角M?AB?D的余弦值为
20. 【解析】 ⑴设P(x,y),易知N(x,0)
10. 5uuuruuuuruuur?y?NP?(0,y)又NM?1NP??0,?
22???∴M?x,12??y?,又M在椭圆上. ?2x2??y??1∴,即x2?y2?2. ??2?2?⑵设点Q(?3,yQ),P(xP,yP),(yQ?0),
uuuruuur由已知:OP?PQ?(xP,yP)?(?3?yP,yQ?yP)?1, uuuruuuruuuruuuruuuruuur2OP?OQ?OP?OP?OQ?OP?1, uuuruuuruuur2∴OP?OQ?OP?1?3,
??∴xP?xQ?yPyQ??3xP?yPyQ?3. 设直线OQ:y??x, ?3因为直线l与lOQ垂直.
yQ∴kl?3 yQ3(x?xP)?yP, yQ故直线l方程为y?令y?0,得?yPyQ?3(x?xP), 1??yPyQ?x?xP, 31∴x??yP?yQ?xP,
3∵yPyQ?3?3xP,
1∴x??(3?3xP)?xP??1,
3若yQ?0,则?3xP?3,xP??1,yP??1,
直线OQ方程为y?0,直线l方程为x??1, 直线l过点(?1,0),为椭圆C的左焦点.
21. 【解析】 ⑴ 因为f?x??x?ax?a?lnx?≥0,x?0,所以ax?a?lnx≥0.
令g?x??ax?a?lnx,则g?1??0,g??x??a?1ax?1, ?xx当a≤0时,g??x??0,g?x?单调递减,但g?1??0,x?1时,g?x??0; 当a?0时,令g??x??0,得x?当0?x?增.
?1??1?若0?a?1,则g?x?在?1,?上单调减,g???g?1??0;
?a??a??1??1?若a?1,则g?x?在?,1?上单调增,g???g?1??0;
?a??a??1?若a?1,则g?x?min?g???g?1??0,g?x?≥0.
?a?综上,a?1.
1. a11时,g??x??0,g?x?单调减;当x?时,g??x??0,g?x?单调aa⑵ f?x??x2?x?xlnx,f??x??2x?2?lnx,x?0.
令h?x??2x?2?lnx,则h??x??2?令h??x??0得x?当0?x?递增.
?1?所以,h?x?min?h???1?2?ln2?0.
?2??1??1?因为he?2?2e?2?0,h?2??2?ln2?0,e?2??0,?,2??,???,
?2??2??1??1?所以在?0,?和?,???上,h?x?即f??x?各有一个零点.
?2??2?12x?1,x?0. ?xx1, 211时,h??x??0,h?x?单调递减;当x?时,h??x??0,h?x?单调22???1??1?1??x2,因为f??x?在?0,?上设f??x?在?0,?和?,???上的零点分别为x0,?2??2?2??单调减,
所以当0?x?x0时,f??x??0,f?x?单调增;当x0?x?单调减.因此,x0是f?x?的极大值点.
1时,f??x??0,f?x?2