...
河南省南阳市南召县中考数学模拟试卷(4月份)
一.选择题(共10小题,满分24分)
1.若|X|=3,|Y|=4,且X<Y,那么X+Y=( ) A.+1或+7 B.﹣1或﹣7 C.+1或﹣7
D.﹣1或+7
2.已知某种型号的纸100张厚度约为1cm,那么这种型号的纸13亿张厚度约为( ) A.1.3×107km B.1.3×103km C.1.3×102km D.1.3×10km
3.(3分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
A.主视图 B.俯视图 C.左视图 D.一样大
4.(3分)关于x的方程rx2+(r+2)x+r﹣1=0有根只有整数根的一切有理数r的值有( )个. A.1
B.2
C.3
D.不能确定
只有唯一的整数解,则a的值可以是( )
5.(3分)已知关于x的不等式组A.﹣1 B. C.1
D.2
6.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有( )
A.1个 B.2个 C.3个 D.4个
7.(3分)如图,AB与CD相交于点E,AD∥BC,
,CD=16,则DE的长为( )
...
...
A.3 B.6 C. D.10
8.(3分)下列说法正确的是( )
A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差是S2甲=0.4 C.“明天降雨的概率为”,表示明天有半天都在降雨 D.了解一批电视机的使用寿命,适合用普查的方式
9.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,点E是OA的中点,以点O为圆心,OE为半径画弧,交OB于点F,若AB=5,BD=6,则图中阴影部分的面积是( )
A.6﹣π B.6﹣ C.12﹣π D.12﹣2π
10.(3分)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A. B. C.
D.
二.填空题(共5小题,满分15分,每小题3分)
...
...
11.(3分)计算:|﹣3|+(﹣4)0= .
12.(3分)已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)
2
的最小值是 .
13.(3分)袋子中装有红、黄、绿三种颜色的小球各一个,从中任意摸出一个放回搅匀,再摸出一个球,则两次摸出的球都是黄色的概率是 .
14.(3分)如图,在平面直角坐标系中,抛物线y=﹣x2+3x与x轴正半轴交于点A,其顶点为P,将点P绕点O旋转180°后得到点C,连结PA、PC、AC,则△PAC的面积为 .
15.(3分)如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为 .
三.解答题(共8小题,满分75分) 16.(8分)先化简,再求值:(1﹣
)÷
,其中x=﹣2
17.(9分)为了了解某校学生的身高状况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制如图所示的统计图表:
组别 A B C D E
身高(cm) x<150 150≤x<155 155≤x<160 160≤x<165 x≥165
已知女生身高在A组的有8人,根据图表中提供的信息,回答下列问题:
...
...
(1)男生身高的中位数落在 组(填组别字母序号);
(2)在样本中,身高在150≤x<155之间的人数共有 人,身高人数最多的在 组(填 组别序号);
(3)已知该校共有男生400人、女生420人,请估计身高不足160cm的学生约有多少人?
18.(9分)一艘救生船在码头A接到小岛C处一艘渔船的求救信号,立即出发,沿北偏东67°方向航行10海里到达小岛C处,将人员撤离到位于码头A正东方向的码头B,测得小岛C位于码头B的北偏西53°方向,求码头A与码头B的距.
【参考数据:sin23°≈0.39,c0s23°≈092,tan23°≈0.42,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75】
19.(9分)如图,⊙O的半径为6,点C在⊙O上,将圆折叠,使点C与圆心O重合,折痕为AB且点A、B在⊙O上,E、F是AB上两点(点E、F不与点A、B重合且点E在点F的右边),且AF=BE.
(1)判定四边形OECF的形状;
(2)当AF为多少时,四边形OECF为正方形?
20.(9分)如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB
...
...
═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为. (1)求反比例函数的解析式; (2)求直线EB的解析式; (3)求S△OEB.
21.(10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.
(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?
(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元? 22.(10分)阅读下面材料:
小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求
的值.
小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2). 请回答:
的值为 .
参考小昊思考问题的方法,解决问题:
如图 3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3. (1)求
的值;
(2)若CD=2,则BP= .
...