好文档 - 专业文书写作范文服务资料分享网站

2019-2020中考数学试卷及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

5cm=10cm, ∴BC=2MO=2×

即AB=BC=CD=AD=10cm, 即菱形ABCD的周长为40cm, 故选D. 【点睛】

本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.

3.B

解析:B 【解析】 【分析】

由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解. 【详解】

A、正方体的左视图与主视图都是正方形,故A选项不合题意;

B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符; C、球的左视图与主视图都是圆,故C选项不合题意; D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意; 故选B. 【点睛】

本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.

4.A

解析:A 【解析】

∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能), ∴当他忘记了末位数字时,要一次能打开的概率是故选A.

1. 105.D

解析:D 【解析】 【分析】

先通过加权平均数求出x的值,再根据众数的定义就可以求解. 【详解】

3+90x+100=85(1+3+x+1), 解:根据题意得:70+80×x=3

∴该组数据的众数是80分或90分. 故选D. 【点睛】

本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.

6.C

解析:C 【解析】

试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断. 解:图(1)有一条对称轴,是轴对称图形,符合题意;

图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意; 图(3)有二条对称轴,是轴对称图形,符合题意; 图(3)有五条对称轴,是轴对称图形,符合题意; 图(3)有一条对称轴,是轴对称图形,符合题意. 故轴对称图形有4个. 故选C.

考点:轴对称图形.

7.D

解析:D 【解析】

根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确. 故选D.

8.C

解析:C 【解析】 【分析】 先化简后利用【详解】

=6

∵1.7<∴5<3

<2, <6,即5<

<6,

-3

=3

的范围进行估计解答即可.

故选C. 【点睛】

此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.

9.B

解析:B 【解析】 【分析】 【详解】

过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB, ∴四边形PQCD与四边形APQB都为平行四边形, ∴△PDC≌△CQP,△ABP≌△QPB, ∴S△PDC=S△CQP,S△ABP=S△QPB, ∵EF为△PCB的中位线, ∴EF∥BC,EF=

1BC, 2∴△PEF∽△PBC,且相似比为1:2, ∴S△PEF:S△PBC=1:4,S△PEF=3,

∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1?S2=12. 故选B.

10.A

解析:A 【解析】

试题分析:由题意易知:∠CAB=45°,∠ACD=30°. 若旋转角度为15°,则∠ACO=30°+15°=45°. ∴∠AOC=180°-∠ACO-∠CAO=90°. 在等腰Rt△ABC中,AB=4,则AO=OC=2. 在Rt△AOD1中,OD1=CD1-OC=3, 由勾股定理得:AD1=13. 故选A.

考点: 1.旋转;2.勾股定理.

11.C

解析:C 【解析】

【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.

【详解】A. ?x?4x??x?x?4? ,故A选项错误;

2B. x?xy?x?x?x?y?1?,故B选项错误;

2C. x?x?y??y?y?x???x?y? ,故C选项正确; D. x2?4x?4=(x-2)2,故D选项错误, 故选C.

2【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.

12.无

二、填空题

13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比

解析:【解析】 【分析】

根据反比例函数k的几何意义可知:?AOP的面积为两个三角形面积作差即可求出结果. 【详解】

解:根据反比例函数k的几何意义可知:?AOP的面积为∴?AOB的面积为故答案为8. 【点睛】

本题考查反比例函数k的几何意义,解题的关键是正确理解k的几何意义,本题属于基础题型.

11k1,?BOP的面积为k2,然后2211k1,?BOP的面积为k2, 221111k1?k2,∴k1?k2?4,∴k1?k2?8.

222214.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4?三个数依次不断循环∵2019÷3=673∴a2019

3. 4【解析】 【分析】

解析:

利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题. 【详解】 ∵a1=4 a2=

111???, 1?a11?431?a3=1?a213??1?4, 1?????3?11??4a4=1?a33, 1?4…

13数列以4,?,三个数依次不断循环,

343=673, ∵2019÷

3, 43故答案为:.

4【点睛】

∴a2019=a3=

此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.

15.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等

解析:-6 【解析】

因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,AC=-2x,OB=

kk2k),则点A的坐标为(-x,),点B的坐标为(0,),因此xxx2K,根据菱形的面积等于对角线乘积的一半得: X12kS菱形OABC????2x???12,解得k??6.

2x16.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2

解析:12﹣43 【解析】 【分析】 【详解】

试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,

∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,

∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3, ∴∠AOE=45°,ED=1, ∴AE=EO=3,DO=3﹣1,

2019-2020中考数学试卷及答案

5cm=10cm,∴BC=2MO=2×即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.3.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看
推荐度:
点击下载文档文档为doc格式
2fkae83a4u4vbt01gdv99bpag891im0040e
领取福利

微信扫码领取福利

微信扫码分享