2024年浙江省温州市中考数学试卷
一、选择题(共10小题,每小题4分,共40分): 1.(4分)﹣6的相反数是( ) A.6
B.1
C.0
D.﹣6
2.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有( )
A.75人 B.100人 C.125人 D.200人
3.(4分)某运动会颁奖台如图所示,它的主视图是( )
A. B. C.
最接近的是( )
D.
4.(4分)下列选项中的整数,与A.3
B.4
C.5
D.6
5.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:
零件个数(个) 5 人数(人) 3 6 15 7 22 8 10 表中表示零件个数的数据中,众数是( ) A.5个 B.6个 C.7个 D.8个
6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是( ) A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1
,
7.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=
则小车上升的高度是( )
A.5米 B.6米 C.6.5米 D.12米
8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)
2
+2(2x+3)﹣3=0,它的解是( )
C.x1=﹣1,x2=3
D.x1=﹣1,x2=﹣3
A.x1=1,x2=3 B.x1=1,x2=﹣3
9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2
EF,则正方形ABCD的面积为( )
A.12S B.10S C.9S D.8S
10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧
,
,
,…得到
斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为( )
A.(﹣6,24) B.(﹣6,25) C.(﹣5,24) D.(﹣5,25)
二、填空题(共6小题,每小题5分,共30分): 11.(5分)分解因式:m2+4m= .
12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 .
13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为 . 14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: .
15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为 .
16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为 cm.
三、解答题(共8小题,共80分):
17.(10分)(1)计算:2×(﹣3)+(﹣1)2+(2)化简:(1+a)(1﹣a)+a(a﹣2).
18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD. (1)求证:△ABC≌△AED;
(2)当∠B=140°时,求∠BAE的度数.
;
19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门). (1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.
(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)
20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标; (2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.
21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D (1)求证:四边形CDEF是平行四边形; (2)若BC=3,tan∠DEF=2,求BG的值.
22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2. (1)求抛物线的对称轴和点B的坐标;
(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D; ①连结BD,求BD的最小值;
②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.
23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.
(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值; (2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等 ①求AB,BC的长;
②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域
Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.
24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE. (1)当∠APB=28°时,求∠B和(2)求证:AC=AB. (3)在点P的运动过程中
①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值; ②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.
的度数;
2024年浙江省温州市中考数学试卷
参考答案与试题解析
一、选择题(共10小题,每小题4分,共40分): 1.(4分)(2024?温州)﹣6的相反数是( ) A.6
B.1
C.0
D.﹣6
【分析】根据相反数的定义求解即可. 【解答】解:﹣6的相反数是6, 故选:A.
【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.
2.(4分)(2024?温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有( )
A.75人 B.100人 C.125人 D.200人
【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数; 【解答】解:所有学生人数为 100÷20%=500(人); 所以乘公共汽车的学生人数为 500×40%=200(人). 故选D.
【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
3.(4分)(2024?温州)某运动会颁奖台如图所示,它的主视图是( )
A. B. C. D.
【分析】根据从正面看得到的图形是主视图,可得答案. 【解答】解:从正面看故选:C.
【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.
4.(4分)(2024?温州)下列选项中的整数,与A.3
B.4
C.5
D.6
最接近的是( )
,
【分析】依据被开放数越大对应的算术平方根越大进行解答即可. 【解答】解:∵16<17<20.25, ∴4<∴与
<4.5, 最接近的是4.
故选:B.
【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.
5.(4分)(2024?温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表: 零件个数(个) 5 人数(人) 3 6 15 7 22 8 10 表中表示零件个数的数据中,众数是( ) A.5个 B.6个 C.7个 D.8个
【分析】根据众数的定义,找数据中出现最多的数即可.
【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,
故选C.
【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.
6.(4分)(2024?温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是( ) A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1
【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论. 【解答】解:∵点(﹣1,y1),(4,∴y1=﹣5,y2=10, ∵10>0>﹣5, ∴y1<0<y2. 故选B.
【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.
7.(4分)(2024?温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=
,则小车上升的高度是( )
)在一次函数y=3x﹣2的图象上,
A.5米 B.6米 C.6.5米 D.12米
【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可. 【解答】解:如图AC=13,作CB⊥AB,
∵cosα==,
∴AB=12, ∴BC=
=132﹣122=5,
∴小车上升的高度是5m. 故选A.
【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.
8.(4分)(2024?温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是( ) A.x1=1,x2=3 B.x1=1,x2=﹣3
C.x1=﹣1,x2=3
D.x1=﹣1,x2=﹣3
【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可. 【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程, 所以2x+3=1或2x+3=﹣3, 所以x1=﹣1,x2=﹣3. 故选D.
【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
9.(4分)(2024?温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2
EF,则正方形ABCD的面积为( )
A.12S B.10S C.9S D.8S
【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题. 【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2 由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b, ∵AM=2∴2a=2∴a=
EF, b, b,
∵正方形EFGH的面积为S, ∴b2=S,
∴正方形ABCD的面积=4a2+b2=9b2=9S, 故选C.
【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
10.(4分)(2024?温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧
,
,
,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为( )
A.(﹣6,24) B.(﹣6,25) C.(﹣5,24) D.(﹣5,25) 【分析】观察图象,推出P9的位置,即可解决问题.
【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,
所以P9的坐标为(﹣6,25), 故选B.
【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.
二、填空题(共6小题,每小题5分,共30分):
11.(5分)(2024?温州)分解因式:m2+4m= m(m+4) . 【分析】直接提提取公因式m,进而分解因式得出答案. 【解答】解:m2+4m=m(m+4). 故答案为:m(m+4).
【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
12.(5分)(2024?温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2 .
【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案. 【解答】解:∵数据1,3,5,12,a的中位数是整数a, ∴a=3或a=4或a=5,
当a=3时,这组数据的平均数为
=4.8,
当a=4时,这组数据的平均数为当a=5时,这组数据的平均数为故答案为:4.8或5或5.2.
=5, =5.2,
【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.
13.(5分)(2024?温州)已知扇形的面积为3π,圆心角为120°,则它的半径为 3 .
【分析】根据扇形的面积公式,可得答案. 【解答】解:设半径为r,由题意,得 πr2×
=3π,
解得r=3, 故答案为:3.
【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.
14.(5分)(2024?温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:
=
.
【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.
【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:
=
. =
.
故答案是:
【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.
15.(5分)(2024?温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,
点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为
.
【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,
m),列方程即可得到结论.
【解答】解:∵四边形ABCO是矩形,AB=1, ∴设B(m,1), ∴OA=BC=m,
∵四边形OA′B′D与四边形OABD关于直线OD对称, ∴OA′=OA=m,∠A′OD=∠AOD=30°, ∴∠A′OA=60°, 过A′作A′E⊥OA于E, ∴OE=m,A′E=∴A′(m,
m,
m),
∵反比例函数y=(k≠0)的图象恰好经过点A′,B, ∴m?∴m=∴k=
m=m, , .
.
故答案为:
【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.
16.(5分)(2024?温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为 24﹣8 cm.
【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣得出点E的横坐标为6+8
x2+x+24,最后根据点E的纵坐标为10.2,
,据此可得点E到洗手盆内侧的距离.
【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,
由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36, ∴Rt△APM中,MP=8,故DQ=8=OG, ∴BQ=12﹣8=4,
由BQ∥CG可得,△ABQ∽△ACG, ∴
=
,即
=
,
∴CG=12,OC=12+8=20, ∴C(20,0),
又∵水流所在抛物线经过点D(0,24)和B(12,24), ∴可设抛物线为y=ax2+bx+24,
把C(20,0),B(12,24)代入抛物线,可得
,解得,
∴抛物线为y=﹣
x2+x+24,
又∵点E的纵坐标为10.2, ∴令y=10.2,则10.2=﹣解得x1=6+8
,x2=6﹣8
x2+x+24, (舍去), ,
∴点E的横坐标为6+8又∵ON=30, ∴EH=30﹣(6+8故答案为:24﹣8
)=24﹣8.
.
【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.
三、解答题(共8小题,共80分):
17.(10分)(2024?温州)(1)计算:2×(﹣3)+(﹣1)2+(2)化简:(1+a)(1﹣a)+a(a﹣2).
【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.
(2)运用平方差公式即可解答. 【解答】解:(1)原式=﹣6+1+2
;
=﹣5+2;
(2)原式=1﹣a2+a2﹣2a=1﹣2a.
【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.
18.(8分)(2024?温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求证:△ABC≌△AED;
(2)当∠B=140°时,求∠BAE的度数.
【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
【解答】解:(1)∵AC=AD, ∴∠ACD=∠ADC, 又∵∠BCD=∠EDC=90°, ∴∠ACB=∠ADE, 在△ABC和△AED中,
,
∴△ABC≌△AED(SAS);
(2)当∠B=140°时,∠E=140°, 又∵∠BCD=∠EDC=90°,
∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.
【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.
19.(8分)(2024?温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).
(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.
(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)
【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;
(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解. 【解答】解:(1)480×
=90,
估计该校七年级480名学生选“数学故事”的人数为90人; (2)画树状图为:
共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2, 所以他和小慧被分到同一个班的概率==.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\\
20.(8分)(2024?温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标; (2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.
【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题; (2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;
【解答】解:(1)设P(x,y),由题意x+y=2, ∴P(2,0)或(1,1)或(0,2)不合题意舍弃, △PAB如图所示.
(2)设P(x,y),由题意x2+42=4(4+y),
整数解为(2,1)或(0,0)等,△PAB如图所示.
【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.
21.(10分)(2024?温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D (1)求证:四边形CDEF是平行四边形; (2)若BC=3,tan∠DEF=2,求BG的值.
【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;
(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等
量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论. 【解答】解:(1)连接CE,
∵在△ABC中,AC=BC,∠ACB=90°, ∴∠B=45°,
∴∠COE=2∠B=90°, ∵EF是⊙O的切线, ∴∠FEO=90°, ∴EF∥OC, ∵DE∥CF,
∴四边形CDEF是平行四边形;
(2)过G作GN⊥BC于N, ∴△GMB是等腰直角三角形, ∴MB=GM,
∵四边形CDEF是平行四边形, ∴∠FCD=∠FED,
∵∠ACD+∠GCB=∠GCB+∠CGM=90°, ∴∠CGM=∠ACD, ∴∠CGM=∠DEF, ∵tan∠DEF=2, ∴tan∠CGM=∴CM=2GM,
∴CM+BM=2GM+GM=3, ∴GM=1, ∴BG=
GM=
. =2,
【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.
22.(10分)(2024?温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2. (1)求抛物线的对称轴和点B的坐标;
(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D; ①连结BD,求BD的最小值;
②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.
【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;
(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;
②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE=
=
=3,
求出P、D的坐标即可解决问题;
【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣
=4,
∵A、B关于对称轴对称, ∴B(10,5).
(2)①如图1中,
由题意点D在以O为圆心OC为半径的圆上, ∴当O、D、B共线时,BD的最小值=OB﹣OD=
﹣5=5﹣5.
②如图2中,
图2
当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,
∴DE===3,
∴点D的坐标为(4,3).
设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22, ∴x=, ∴P(,5),
∴直线PD的解析式为y=﹣x+
.
【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.
23.(12分)(2024?温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示. (1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值; (2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等 ①求AB,BC的长;
②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.
【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可; (2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;
②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元
/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x?s+3x?(12﹣s)=4800,解得s=
,由0<s<12,可得0<
<12,解不等式即可;
【解答】解:(1)由题意300S+(48﹣S)200≤12000, 解得S≤24. ∴S的最大值为24.
(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1, ∴AB=6﹣2a=4,CB=8﹣2a=6.
②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2, ∵PQ∥AD,
∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),
由题意12(300﹣3x)+5x?s+3x?(12﹣s)=4800, 解得s=
,
∵0<s<12, ∴0<
<12,又∵300﹣3x>0,
综上所述,50<x<100,150<3x<300, ∴丙瓷砖单价3x的范围为150<3x<300元/m2.
【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.
24.(14分)(2024?温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE. (1)当∠APB=28°时,求∠B和(2)求证:AC=AB. (3)在点P的运动过程中
①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值; ②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.
的度数;
【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到
=2∠MDB=56°;
(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB; (3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=
,MR=
,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当
∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为
或或
;
②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=而得出S△ACG=CG×CH=面积之比.
,再根据S△DEG=
﹣1,进
,即可得到△ACG和△DEG的
【解答】解:(1)∵MN⊥AB,AM=BM, ∴PA=PB, ∴∠PAB=∠B, ∵∠APB=28°, ∴∠B=76°, 如图1,连接MD,
∵MD为△PAB的中位线, ∴MD∥AP,
∴∠MDB=∠APB=28°, ∴
=2∠MDB=56°;
(2)∵∠BAC=∠MDC=∠APB,
又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B, ∴∠BAP=∠ACB, ∵∠BAP=∠B, ∴∠ACB=∠B, ∴AC=AB;
(3)①如图2,记MP与圆的另一个交点为R,
∵MD是Rt△MBP的中线, ∴DM=DP,
∴∠DPM=∠DMP=∠RCD, ∴RC=RP,
∵∠ACR=∠AMR=90°, ∴AM2+MR2=AR2=AC2+CR2, ∴12+MR2=22+PR2, ∴12+(4﹣PR)2=22+PR2, ∴PR=∴MR=
, ,
Ⅰ.当∠ACQ=90°时,AQ为圆的直径, ∴Q与R重合, ∴MQ=MR=
;
Ⅱ.如图3,当∠QCD=90°时,
在Rt△QCP中,PQ=2PR=,
∴MQ=;
Ⅲ.如图4,当∠QDC=90°时,
∵BM=1,MP=4, ∴BP=
,
, =
,
∴DP=BP=∵cos∠MPB=∴PQ=∴MQ=
, ;
Ⅳ.如图5,当∠AEQ=90°时,
由对称性可得∠AEQ=∠BDQ=90°, ∴MQ=
;
或或
;
综上所述,MQ的值为
②△ACG和△DEG的面积之比为理由:如图6,∵DM∥AF, ∴DF=AM=DE=1, 又由对称性可得GE=GD, ∴△DEG是等边三角形, ∴∠EDF=90°﹣60°=30°, ∴∠DEF=75°=∠MDE, ∴∠GDM=75°﹣60°=15°, ∴∠GMD=∠PGD﹣∠GDM=15°, ∴GMD=∠GDM, ∴GM=GD=1, 过C作CH⊥AB于H,
.
由∠BAC=30°可得CH=AC=AB=1=MG,AH=∴CG=MH=
﹣1,
,
,
∴S△ACG=CG×CH=∵S△DEG=
,
∴S△ACG:S△DEG=.
【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.