第6章作业
6—1什么是静平衡?什么是动平衡?各至少需要几个平衡平面?静平衡、动平衡的力学条件各是什么?
6—2动平衡的构件一定是静平衡的,反之亦然,对吗?为什么?在图示 (a)(b)两根曲轴中,设各曲拐的偏心质径积均相等,且各曲拐均在同一轴平面上。试说明两者各处于何种平衡状态?
答:动平衡的构件一定是静平衡的,反之不一定。因各偏心质量产生的合惯性力为零时,合惯性力偶不一定为零。(a)图处于动平衡状态,(b)图处于静平衡状态。
6一3既然动平衡的构件一定是静平衡的,为什么一些制造精度不高的构件在作动平衡之前需先作静平衡?
6—4为什么作往复运动的构件和作平面复合运动的构件不能在构件本身内获得平衡,而必须在基座上平衡?机构在基座上平衡的实质是什么? 答 由于机构中作往复运动的构件不论其质量如何分布,质心和加速度瞬心总是随着机械的运动周期各沿一条封闭曲线循环变化的,因此不可能在一个构件的内部通过调整其质量分布而达到平衡,但就整个机构而言.各构件产生的惯性力可合成为通过机构质心的的总惯性力和总惯性力偶矩,这个总惯性力和总惯性力偶矩全部由机座承受,所以必须在机座上平衡。机构在基座上平衡的实质是平衡机构质心的总惯性力,同时平衡作用在基座上的总惯性力偶矩、驱动力矩和阻力矩。
6—5图示为一钢制圆盘,盘厚b=50 mm。位置I处有一直径φ=50 inm的通孔,位置Ⅱ处有一质量m2=0.5 kg的重块。为了使圆盘平衡,拟在圆盘上r=200 mm处制一通孔,试求此孔的直径与位置。(钢的密度ρ=7.8 g/em3。)
解 根据静平衡条件有: m1rI+m2rⅡ+mbrb=0
m2rⅡ=0.5×20=10 kg.cm
m1r1=ρ×(π/4) ×φ2×b×r1=7.8 ×10-3×(π/4)×52×5 ×l0=7.66 kg.cm 取μW=4(kg.cm)/cm,作质径积矢量多边形如图所示,所添质量为: m b=μwwb/r=4×2.7/20=0.54 kg,θb=72o,可在相反方向挖一通孔 其直径为:
6—6图示为一风扇叶轮。已知其各偏心质量为m1=2m2=600 g,其矢径大小为r1=r2=200 mm,方位如图。今欲对此叶轮进行静平衡,试求所需的平衡质量的大小及方位(取rb=200 mm)。 (注:平衡质量只能加在叶片上,必要时可将平衡质量分解到相邻的两个叶片上。)
解 根据静平衡条件有: m1r1+m2r2+mbrb=0
m1r1=0.6×20=1 2 kg.cm m2r2=0.3×20=6 kg.cm
取μW=4(kg.cm)/cm作质径积矢量多边形如图 mb=μWWb/r=4×2.4/20=0.48 kg,θb =45o
分解到相邻两个叶片的对称轴上
6—7在图示的转子中,已知各偏心质量m1=10 kg,m2=15 k,m3=20 kg,m4=10 kg它们的回转半径大小分别为r1=40cm,r2=r4=30cm,r3=20cm,方位如图所示。若置于平衡基面I及Ⅱ中的平衡质量mbI及mbⅡ的回转半径均为50cm,试求mbI及mbⅡ的大小和方位(l12=l23=l34)。
m?sin45?0.39kg????sin(180?45?45?30) m??mb3?sin(45?30)?0.58kg?sin60 mb2?
解 根据动平衡条件有
21m1r1?mr?mr3?3mbrb?221033 21m4r4?mr?mr2?2mbrb1?331033
以μW作质径积矢量多边形,如图所示。则
mbI=μWWbI/rb=5.6 kg,θbI =6o
mbⅡ=μWWbⅡ/rb=5.6 kg,θbⅡ=145o
6—8图示为一滚筒,在轴上装有带轮现已测知带轮有一偏心质量。另外,根据该滚筒的结构知其具有两个偏心质量m2=3 kg,m3=4,各偏心质量的方位如图所示(长度单位为)。若将平衡基面选在滚筒的两端面上,两平衡基面中平衡质量的回转半径均取为,试求两平衡质量的大小和方位。若将平衡基面Ⅱ改选在带轮宽度的中截面上,其他条件不变,两平衡质量的大小和方位作何改变?
解 (1)以滚筒两端面为平衡基面时,其动平衡条件为
3.51.59.5mr?mr?mr?1122303111111 14.59.51.5mb11rb1?mr?mr?mr?30311122111111
mb1rb1?以μW作质径极矢量多边形.如图 (a),(b),则
mbI=μWWbI/rb==1.45 kg, θbI =145o
mbⅡ=μWWbⅡ/rb=0.9kg,θbⅡ=255o
(2)以带轮中截面为平衡基面Ⅱ时,其动平衡条件为
以μw=2 kg.crn/rnm,作质径积矢量多边形,如图 (c),(d),则 mbI=μWWbI/rb==2×27/40=1.35 kg,θbI =160o
mbⅡ=μWWbⅡ/rb=2×14/40=0.7kg,θbⅡ=-105o
6—9 已知一用于一般机器的盘形转子的质量为30 kg,其转速n=6 000 r/min,试确定其许用不平衡量。
解 (1)根据一般机器的要求,可取转子的平衡精度等级为G6.3,对应平衡精度A=6.3。
(2) n=6000 r/min, ω=2πn/60=628.32 rad/s [e]=1 000A/ω=10.03μm
[mr]=m[e]=30×10.03×10-4=0.03 kg.cm
6—10 图示为一个一般机器转子,已知转子的质量为15 kg,其质心至两平衡基面I及Ⅱ的距离分别为l1=100 mm,12=200 mm,转子的转速n=3 000 r/min,试确定在两个平衡基面I及Ⅱ内的许用不平衡质径积。当转子转速提高到6 000 r/min时,其许用不平衡质径积又各为多少?
513mr?mr3?301114.514.5
9.51.5mb11rb1?mr?mr?mr?3031112214.514.5
mb1rb1?
解 (1)根据一般机器的要求,可取转子的平衡精度等级为G6.3,对应平衡精度A=6.3mm/s。 (2)n=3000r/min, ω=2πn/60= 314.16 rad/s
[e]=1 000A/ω=20.05μm
[mr]=m[e]=15×20.05×10-4=0.03 kg.cm
可求得两平衡基面I及Ⅱ中的许用不平衡质径积为
l2200?30??20g.cml1?l2200?100
l100[m11r11]?[mr]2?30??10g.cml1?l2200?100
[m1r1]?[mr] (3) n=6000 r/min, ω=2πn/60=628.32 rad/s
[e]=1 000A/ω=10.025μm
[mr]=m[e]=15×10.025×10--4=15g.cm
可求得两平衡基面I及Ⅱ中的许用不平衡质径积为
6—11 有一中型电机转子其质量为m=50 kg,转速n=3 000 r/min,已测得其 不平衡质径积mr=300 g·mm,试问其是否满足平衡精度要求?
6—12在图示的曲柄滑块机构中,已知各构件的尺寸为lAB=100 mm, lBC=400 mm;连杆2的质量m2=12 kg,质心在s2处,lBS2=400/3 mm;滑块3的质量m3=20 kg,质心在C点处;曲柄1的质心与A点重合。今欲利用平衡质量法对该机构进行平衡,试问若对机构进行完全平衡和只平衡掉滑块3处往复惯性力的50%的部分平衡,各需加多大的平衡质量mC`和mC``(取lBC``=1AC``=50 mm)?
l2200?15??10g.cml1?l2200?100
l100[m11r11]?[mr]2?15??5g.cml1?l2200?100 [m1r1]?[mr]
解 (1)完全平衡需两个平衡质量,各加在连杆上C’点和曲柄上C``点处,平衡质量的大小为:
mC` =(m2lBS2+m3lBC)/lBC`=(12×40/3+20×40)/5=192 kg mC``=(m`+m2+m3) lAB/lAC``=(1 92十12+20)×10/5=448 kg
(2)部分平衡需一个平衡质量。应加在曲柄延长线上C``点处。平衡质量的大小为: 用B、C为代换点将连杆质量作静代换得 mB2=m2lS2C/lBC=1 2×2/3=8 kg mC2=m2lBS2.lBC=1 2×4=4 kg
mB=mB2=8kg, mC=mC2+m3=24 kg 故下衡质量为
mC``=(mB+mC/2)lAB/lAC``=(8+24/2) ×10/5=40kg
6—13在图示连杆一齿轮组合机构中,齿轮a与曲柄1固连,齿轮b和c分别活套在轴C和D上,设各齿轮的质量分别为m。=10 kg,m b=12 kg,m。=8 kg,其质心分别与轴心B、c、D重合,而杆1、2、3本身的质量略去不计,试设法平衡此机构在运动中的惯性力。