巨磁电阻效应及其应用
【实验目的】
1、 了解GMR效应的原理
2、 测量GMR模拟传感器的磁电转换特性曲线 3、 测量GMR的磁阻特性曲线
4、 用GMR传感器测量电流
5、 用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理
【实验原理】
根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=l/S中,把电阻率视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。
电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。
在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。
电阻欧姆无外磁场时顶层磁场方向 顶层铁磁膜 中间导电层 底层铁磁膜 无外磁场时底层磁场方向 \\ 磁场强度 / 高斯 图3 某种GMR材料的磁阻特性 图2 多层膜GMR结构图
图3是图2结构的某种GMR材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不
再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。
有两类与自旋相关的散射对巨磁电阻效应有贡献。
其一,界面上的散射。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。
其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。
多层膜GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在制作模拟传感器方面得到广泛应用。在数字记录与读出领域,为进一步提高灵敏度,发展了自旋阀结构的GMR。
【实验仪器】
主要包括:巨磁电阻实验仪、基本特性组件、电流测量组件、角位移测量组件、磁读写组件。 基本特性组件由GMR模拟传感器,螺线管线圈及比较电路,输入输出插孔组成。用以对GMR的磁电转换特性,磁阻特性进行测量。
GMR传感器置于螺线管的中央。
螺线管用于在实验过程中产生大小可计算的磁场,由理论分析可知,无限长直螺线管内部轴线上任一点的磁感应强度为:
B = μ0nI (1)
式中n为线圈密度,I为流经线圈的电流强度,?0?4??10?7H/m为真空中的磁导率。
采用国际单位制时,由上式计算出的磁感应强度单位为特斯拉(1特斯拉=10000高斯)。
【实验内容及实验结果处理】
一、GMR模拟传感器的磁电转换特性测量
在将GMR构成传感器时,为了消除温度变化等环境因素对输出的影响,一般采用桥式结构。
a 几何结构 b电路连接
GMR模拟传感器结构图
对于电桥结构,如果4个GMR电阻对磁场的影响完全同步,就不会有信号输出。图17-9中,将处在电桥对角位置的两个电阻R3, R4覆盖一层高导磁率的材料如坡莫合金,以屏蔽外磁场对它们的影响,而R1,R2阻值随外磁场改变。设无外磁场时4个GMR电阻的阻值均为R, R1、R2在外磁场作用下电阻减小△R,简单分析表明,输出电压:
U
OUT=UIN (2R-?R) (2)
屏蔽层同时设计为磁通聚集器,它的高导磁率将磁力线聚集在R1、R2电阻所在的空间,进一步提高了R1,R2的磁灵敏度。 从几何结构还可见,巨磁电阻被光刻成微米宽度迂回状的电阻条,以增大其电
阻至k?数量级,使其在较小工作电流下得到合适的电压输出。
GMR模拟传感器的磁电转换特性
模拟传感器磁电转换特性实验原理图
将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。实验仪的4V电压源接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”,基本特性组件“模拟信号输出”接至实验仪电压表。
按表1数据,调节励磁电流,逐渐减小磁场强度,记录相应的输出电压于表格“减小磁场”列中。由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。再次增大电流i,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。电流至-100mA后,逐渐减小负向电流,电流到0时同样需要交换恒流输出的极性。从下到上记录数据于表一“增大磁场”列中。
理论上讲,外磁场为零时,GMR传感器的输出应为零,但由于半导体工艺的限制,4个桥臂电阻值不一定完全相同,导致外磁场为零时输出不一定为零,在有的传感器中可以观察到这一现象。
根据螺线管上表明的线圈密度,由公式(1)计算出螺线管内的磁感应强度B。 以磁感应强度B作横坐标,电压表的读数为纵坐标作出磁电转换特性曲线。 不同外磁场强度时输出电压的变化反映了GMR传感器的磁电转换特性,同一外磁场强度下输出电压的差值反映了材料的磁滞特性。
表1 GMR模拟传感器磁电转换特性的测量(电桥电压4V,线圈密度为24000匝/米)
磁感应强度/高斯 励磁电流/mA 磁感应强度/高斯 输出电压/mV 减小磁场 增大磁场 100 90 80 70 60 50 40 30 20 10 5 30.1584 27.1426 24.1267 21.1109 18.0950 15.0792 12.0634 9.0475 6.0317 3.0158 1.5079 228 228 227 227 226 222 196 147 96 50 31 228 228 227 226 224 215 180 132 81 40 21 0 -5 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 0.0000 -1.5079 -3.0158 -6.0317 -9.0475 -12.0634 -15.0792 -18.0950 -21.1109 -24.1267 -27.1426 -30.1584 12 20 39 80 129 179 215 224 226 227 228 228 10 30 50 93 144 194 222 226 227 227 228 228
二、GMR磁阻特性测量