选项结论正确;
D.在互联网行业从业者中90后与80后的比例相差不大,故无法判断其技术岗位的人数是谁多,故D选项结论不一定正确. 故选D. 6.答案:B
解析:设双曲线的另一个焦点为E,由题意可得在直角三角形ABF中, OF为斜边AB上的中线,即有AB?2OA?2OF?2c,令
BF?AE?m,AF?n,CF?2n,
由双曲线的定义有,CE?CF?AE?AF?2a,∴CE?2n?2a 在直角三角形EAC中, m2??3n???2n?2a?, 代入2a?m?n,化简可得m?4n, 又m?n?2a得n?2228a,m?a, 332在直角三角形EAF中, m2?n2??2c?, 即为
42642c17. a?a?4c2,可得e??99a3
故选:B. 7.答案:C 解析: 8.答案:D
解析:由题意可得,
T?2????????2, 223?2?????g?x??2sin?2?x?????为偶函数
6????所以???3??3?k1??k1?z?
∵???3
∴k1??1,????6
???∴f?x??2sin?2x??
6??则f?x?的单调增区间为: 2k???2?2x??6?2k???2?k???6?x?k???3?k?z?
故选:D 9.答案:B 解析: 10.答案:C
解析:在△ABC中,A,B,C成等差数列,可得2B?A?C???B,即B?sin?A?C??2SacsinBsinB?,即,
b2?c2b2?c2?3,
即有b2?c2?ac,由余弦定理可得b2?a2?c2?2accosB?a2?c2?ac, 即有a?2c,b?3c,
a2?b2?c24c2?3c2?c23cosC???,
2ab22?2c?3c由C为三角形的内角,可得C?故答案为:
?6.
?. 611.答案:A
?x,x?0∵fx???2x解析:,∴f?x??0恒成立;
e,x?0?∴g??f?x????ef?x??m,∴f?x??lnm;
作函数f?x?,y?lnm的图象如下,
结合图象可知,存在实数m?0?m?1?,使x2?e2x1?m; 11故x1?x2?m?lnm,令g?m??m?lnm,
22则g??m??1?1, 2m?1??1?故g?m?在?0,?递减,在?,1?递增,
?2??2??1?11∴g?m??g????ln2.
?2?22故选:A. 12.答案:D
22解析:当直线MN的斜率不存在时,设My0,y0,Ny0,?y0,
????111由斜率之积为?,可得?2??,即y02?2,
y022∴MN的直线方程为x?2;
当直线的斜率存在时,设直线方程为y?kx?m, ?y?kx?m联立?2,可得ky2?y?m?0.
?y?x设M?x1,y1?,N?x1,y2?,
mm2则y1y2?,x1x2?2,
kk∴KOM?KON?y1y2k1???,即m??2k. x1x2m2∴直线方程为y?kx?2k?k?x?2?. 则直线MN过定点?2,0?. 则O到直线MN的距离不大于2.
综上所述,答案选择:D. 13.答案:-1