好文档 - 专业文书写作范文服务资料分享网站

基于深度卷积神经网络的图像检索算法研究

天下 分享 时间: 加入收藏 我要投稿 点赞

基于深度卷积神经网络的图像检索算法研究

刘海龙;李宝安;吕学强;黄跃

【期刊名称】《计算机应用研究》 【年(卷),期】2017(034)012

【摘要】为解决卷积神经网络在提取图像特征时所造成的特征信息损失,提高图像检索的准确率,提出了一种基于改进卷积神经网络LeNet-L的图像检索算法.首先,改进LeNet-5卷积神经网络结构,增加网络结构深度;然后,对深度卷积神经网络模型LeNet-L进行预训练,得到训练好的网络模型,进而提取出图像高层语义特征;最后,通过距离函数比较待检图像与图像库的相似度,得出相似图像.在Corel数据集上,与原模型以及传统基于SVM主动学习图像检索方法相比,该图像检索方法有较高的准确性.经实验结果表明,改进后的卷积神经网络具有更好的检索效果.%To solve the problem that the loss of image feature information and improve the accuracy of image retrieval,when the convolutional neural network(CNN) was used to extract the feature information of the image,this paper proposed an image retrieval algorithm based on improved convolutional neural network LeNet-L.First,it

improved

LeNet-5

convolution

neural

network

structure,increased depth of network structure.Then,it pre-trained the deep convolutional neural network LeNet-L to extract the high-level semantic features.At last,it obtained the similar images by distance function between the image being retrieved and the one in image database.In Corel dataset,compared with the original model method

and the traditional image retrieval method based on SVM and active learning,the proposed method had a higher accuracy.The experimental results show that the improved convolutional neural network has a better retrieval effect. 【总页数】4页(3816-3819)

【关键词】图像检索;卷积神经网络;特征提取;深度学习 【作者】刘海龙;李宝安;吕学强;黄跃

【作者单位】北京信息科技大学网络文化与数字传播北京市重点实验室,北京100101;北京信息科技大学计算机学院,北京100101;北京信息科技大学计算机学院,北京100101;北京信息科技大学网络文化与数字传播北京市重点实验室,北京100101;首都医科大学宣武医院,北京100053 【正文语种】中文 【中图分类】TP391.41 【文献来源】

https://www.zhangqiaokeyan.com/academic-journal-cn_application-research-computers_thesis/0201241952000.html 【相关文献】

1.基于卷积神经网络和流形排序的图像检索算法 [J], 刘兵; 张鸿

2.基于深度卷积神经网络的图像检索研究 [J], 阳华东; 李明东; 邓旭; 李贤富 3.基于多尺度卷积神经网络的图像检索算法 [J], 王利卿; 黄松杰

4.基于卷积神经网络和PCA降维的图像检索算法 [J], 徐盼盼; 崔文成; 常爱玲 5.基于卷积神经网络和监督核哈希的图像检索方法 [J], 柯圣财; 赵永威; 李弼程;

彭天强

以上内容为文献基本信息,获取文献全文请下载

基于深度卷积神经网络的图像检索算法研究

基于深度卷积神经网络的图像检索算法研究刘海龙;李宝安;吕学强;黄跃【期刊名称】《计算机应用研究》【年(卷),期】2017(034)012【摘要】为解决卷积神经网络在提取图像特征时所造成的特征信息损失,提高图像检索的准确率,提出了一种基于改进卷积神经网络LeNet-L的图像检索算法.首先,改进LeNet-5卷积神经网络结构,增加网
推荐度:
点击下载文档文档为doc格式
2duv65dg5p2wkqq4mj6h371qz5d0jm00kla
领取福利

微信扫码领取福利

微信扫码分享