好文档 - 专业文书写作范文服务资料分享网站

数字信号处理第三版高西全丁玉美课后答案完整版

天下 分享 时间: 加入收藏 我要投稿 点赞

数字信号处理第三版高西全丁玉美课后答案

【HEN16H-HENS2AHENS8Q8-HENH1688】

HEN system office room

西安电子(高西全丁美玉第三版)数字信号处理课后答案

教材第一章习题解答

1. 用单位脉冲序列?(n)及其加权和表示题1图所示的序列。 解:

?2n?5,?4?n??1?2. 给定信号:x(n)??6,0?n?4

?0,其它?(1)画出x(n)序列的波形,标上各序列的值;

(2)试用延迟单位脉冲序列及其加权和表示x(n)序列; (3)令x1(n)?2x(n?2),试画出x1(n)波形; (4)令x2(n)?2x(n?2),试画出x2(n)波形; (5)令x3(n)?2x(2?n),试画出x3(n)波形。 解:

(1)x(n)的波形如题2解图(一)所示。 (2)

(3)x1(n)的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)x2(n)的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画x3(n)时,先画x(-n)的波形,然后再右移2位,x3(n)波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

3?(1)x(n)?Acos(?n?),A是常数;

78(2)x(n)?e解:

32?14?,这是有理数,因此是周期序列,周期是T=14; (1)w??,7w312??16?,这是无理数,因此是非周期序列。 (2)w?,8w

1j(n??)8。

5. 设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)y(n)?x(n)?2x(n?1)?3x(n?2); (3)y(n)?x(n?n0),n0为整常数; (5)y(n)?x2(n); (7)y(n)??x(m)。

m?0n解:

(1)令:输入为x(n?n0),输出为

y'(n)?x(n?n0)?2x(n?n0?1)?3x(n?n0?2)y(n?n0)?x(n?n0)?2x(n?n0?1)?3x(n?n0?2)?y(n)'

故该系统是时不变系统。 故该系统是线性系统。

(3)这是一个延时器,延时器是一个线性时不变系统,下面予以证明。 令输入为x(n?n1),输出为y'(n)?x(n?n1?n0),因为 故延时器是一个时不变系统。又因为 故延时器是线性系统。

(5) y(n)?x2(n) 令:输入为x(n?n0),输出为y'(n)?x2(n?n0),因为 故系统是时不变系统。又因为 因此系统是非线性系统。

(7) y(n)??x(m)

m?0n令:输入为x(n?n0),输出为y(n)??x(m?n0),因为

'm?0n故该系统是时变系统。又因为 故系统是线性系统。

6. 给定下述系统的差分方程,试判断系统是否是因果稳定系统,并说明理由。

1(1)y(n)?N?x(n?k);

k?0N?1(3)y(n)?

n?n0k?n?n0?x(k);

(5)y(n)?ex(n)。

解:

(1)只要N?1,该系统就是因果系统,因为输出只与n时刻的和n时刻以前的输入有关。如果x(n)?M,则y(n)?M,因此系统是稳定系统。 (3)如果x(n)?M,y(n)?n?n0k?n?n0?x(k)?2n0?1M,因此系统是稳定的。系统是

非因果的,因为输出还和x(n)的将来值有关.

(5)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果x(n)?M,则y(n)?ex(n)?ex(n)?eM,因此系统是稳定的。

7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,要求画出输出输出y(n)的波形。

解:

解法(1):采用图解法

图解法的过程如题7解图所示。

解法(2):采用解析法。按照题7图写出x(n)和h(n)的表达式:

x(n)*?(n)?x(n)因为

x(n)*A?(n?k)?Ax(n?k)1y(n)?x(n)*[2?(n)??(n?1)??(n?2)]2所以

1 ?2x(n)?x(n?1)?x(n?2)2将x(n)的表达式代入上式,得到

8. 设线性时不变系统的单位取样响应h(n)和输入x(n)分别有以下三种情况,分别求出输出y(n)。

(1)h(n)?R4(n),x(n)?R5(n);

(2)h(n)?2R4(n),x(n)??(n)??(n?2); (3)h(n)?0.5nu(n),xn?R5(n)。 解:

(1) y(n)?x(n)*h(n)?m????R(m)R(n?m)

45?先确定求和域,由R4(m)和R5(n?m)确定对于m的非零区间如下:

根据非零区间,将n分成四种情况求解: ①n?0,y(n)?0

②0?n?3,y(n)??1?n?1

m?0n③4?n?7,y(n)?④7?n,y(n)?0

m?n?4?1?8?n

3最后结果为

y(n)的波形如题8解图(一)所示。 (2)

y(n)的波形如题8解图(二)所示. (3)

y(n)对于m的非零区间为0?m?4,m?n。 ①n?0,y(n)?0 ②0?n?4,y(n)?0.54nm?0?0.5?mn?m1?0.5?n?1?0.5n??(1?0.5?n?1)0.5n?2?0.5n ?11?0.5③5?n,y(n)?0.5nm?0?0.51?0.5?5?0.5n?31?0.5n ?11?0.5最后写成统一表达式:

11. 设系统由下面差分方程描述:

11y(n)?y(n?1)?x(n)?x(n?1);

22设系统是因果的,利用递推法求系统的单位取样响应。 解:

令:x(n)??(n) 归纳起来,结果为

12. 有一连续信号xa(t)?cos(2?ft??),式中,f?20Hz,??(1)求出xa(t)的周期。

(2)用采样间隔T?0.02s对xa(t)进行采样,试写出采样信号xa(t)的表达式。 (3)画出对应xa(t)的时域离散信号(序列) x(n)的波形,并求出x(n)的周期。

?2

————第二章————

教材第二章习题解答

2dsbw59qcm9kcek7hm3l8mqar1ru5x013gp
领取福利

微信扫码领取福利

微信扫码分享