2024年广西桂林市中考数学试卷
一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑) 1.(3分)的倒数是( ) A.
B.﹣
C.﹣
D.
2.(3分)若海平面以上1045米,记做+1045米,则海平面以下155米,记做( ) A.﹣1200米
B.﹣155米
C.155米
D.1200米
3.(3分)将数47300000用科学记数法表示为( ) A.473×105
B.47.3×106
C.4.73×107
D.4.73×105
4.(3分)下列图形中,是中心对称图形的是( )
A.圆 B.等边三角形
C.直角三角形 D.正五边形
5.(3分)9的平方根是( ) A.3
B.±3
C.﹣3
D.9
6.(3分)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )
A.
B.
C.
D.
7.(3分)下列命题中,是真命题的是( ) A.两直线平行,内错角相等 B.两个锐角的和是钝角 C.直角三角形都相似 D.正六边形的内角和为360°
8.(3分)下列计算正确的是( ) A.a2?a3=a6 C.a2+a2=2a2
B.a8÷a2=a4 D.(a+3)2=a2+9
9.(3分)如果a>b,c<0,那么下列不等式成立的是( ) A.a+c>b C.ac﹣1>bc﹣1
B.a+c>b﹣c
D.a(c﹣1)<b(c﹣1)
10.(3分)一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为( )
A.π
B.2π
C.3π
D.(
+1)π
11.(3分)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则
的值为( )
A.
B.
C.
D.
12.(3分)如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为( )
A.y=
x+
B.y=x+
C.y=x+1
D.y=x+
二、填空题(共6小题.每小题3分,共18分,请将答案填在答题卡上) 13.(3分)计算:|﹣2024|= .
14.(3分)某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进
行综合评分.下表是各小组其中一周的得分情况: 组别 得分
一 90
二 95
三 90
四 88
五 90
六 92
七 85
八 90
这组数据的众数是 .
15.(3分)一元二次方程(x﹣3)(x﹣2)=0的根是 . 16.(3分)若x2+ax+4=(x﹣2)2,则a= .
17.(3分)如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为 .
18.(3分)如图,在矩形ABCD中,AB=
,AD=3,点P是AD边上的一个动点,连接BP,作点A关
于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为 .
三.解答题(本大题共8题,共66分,请将解答过程写在答题卡上) 19.(6分)计算:(﹣1)2024﹣
+tan60°+(π﹣3.14)0.
20.(6分)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.
(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;
(2)建立适当的平面直角坐标系,使得点A的坐为(﹣4,3); (3)在(2)的条件下,直接写出点A1的坐标.
21.(8分)先化简,再求值:(﹣)÷
﹣
,其中x=2+
,y=2.
22.(8分)某校在以“青春心向觉,建功新时代”为主题的校园文化艺术节期间,举办了A合唱,B群舞,C书法,D演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题: (1)本次调查的学生总人数是多少?扇形统计图中“D”部分的圆心角度数是多少? (2)请将条形统计图补充完整;
(3)若全校共有1800名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?
23.(8分)如图,AB=AD,BC=DC,点E在AC上. (1)求证:AC平分∠BAD; (2)求证:BE=DE.
24.(8分)为响应国家“足球进校园”的号召,某校购买了50个A类足球和25个B类足球共花费7500元,已知购买一个B类足球比购买一个A类足球多花30元.
(1)求购买一个A类足球和一个B类足球各需多少元?
(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?
25.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.
(1)求证:△ACB是等腰直角三角形; (2)求证:OA2=OE?DC: (3)求tan∠ACD的值.
26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣2,0)和B(l,0),与y轴交于点C. (1)求抛物线的表达式;
(2)作射线AC,将射线AC绕点A顺时针旋转90°交抛物线于另一点D,在射线AD上是否存在一点H,使△CHB的周长最小.若存在,求出点H的坐标;若不存在,请说明理由;
(3)在(2)的条件下,点Q为抛物线的顶点,点P为射线AD上的一个动点,且点P的横坐标为t,过点P作x轴的垂线l,垂足为E,点P从点A出发沿AD方向运动,直线l随之运动,当﹣2<t<1时,直线l将四边形ABCQ分割成左右两部分,设在直线l左侧部分的面积为S,求S关于t的函数表达式.