好文档 - 专业文书写作范文服务资料分享网站

小学奥数举一反三(五年级完整版)

天下 分享 时间: 加入收藏 我要投稿 点赞

数学奥数培训资料 箭金学堂

第15讲 长方体和正方体(三)

一、知识要点

解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。

二、精讲精练

【例题1】 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?

【思路导航】把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的

面,锯6次共增加36×2×6=432平方厘米的面积。因此,锯好后表面积增加432平方厘米。

练习1:

1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?

2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?

3.把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。求涂上红色的面积一共是多少平方厘米?

【例题2】 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?

【思路导航】把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。所以原正方体的表面积是12×6=72平方厘米。

练习2:

1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?

2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?

3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?

【例题3】 有一个正方体,棱长是3分米。如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?

想一想:在切的过程中,每切一切,就会增加两个3×3平方分米的面,你能用这种思路来计算所求问题吗?

练习3:

1.用棱长是1厘米的小正方体摆成一个稍大一些的正方体,至少需要多少个小正方体?如果要摆一个棱长是6厘米的正方体,需要多少个小正方体?

2.有一个长方体,长10厘米、宽6厘米、高4厘米,如果把它锯成棱长是1厘米的小正方体,一共能锯多少个?这些小正方体的表面积和是多少?

- 46 -

数学奥数培训资料 将心注入 梦想可及

3.把24个棱长是1厘米的小正方体摆成一个长方体,这个长方体的表面积至少是多少平方厘米?

【例题4】 一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中: (1)三个面涂有红色的有几个? (2)二个面涂有红色的有几个? (3)一个面涂有红色的有几个? (4)六个面都没有涂色的有几个? 【思路导航】按题中的要求切,切成的小正方体一共有3×3×3=27个。

(1)三个面涂有红色的小正方体在大正方体的顶点处,共有8个; (2)二个面涂有红色的小正方体在大正方体的棱上,共有1×12=12个; (3)一个面涂有红色的小正方体在大正方体的六个面上,共有1×6=6个; (4)六个面都没有涂色的在大正方体的中间,有27-(8+12+6)=1个。 练习4:

1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?

2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?

3.把1立方米的正方体木块的表面涂上颜色,然后切成1立方分米的小正方体,在这些小正方体中,六个面都没有涂色的有多少个?

【例题5】 一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?

【思路导航】这个长方体原来的表面积是(6×5+6×4+5×4)×2=148平方厘米,每切割一刀,增加2个面。切成三个体积相等的小长方体要切2刀,一共增加2×2=4个面。要求表面积和最大,应该增加4个6×5=30平方厘米的面。所以,三个小长方体表面积和最大是148+6×5×4=268平方厘米。

练习5:

1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米? 2.把8个同样大小的小正方体拼成一个大正方体,已知每个小正方体的表面积是72平方厘米,拼成的大正方体的表面积是多少平方厘米?

3.把一个长、宽、高分别为7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积的和最大,求它们的表面积和是多少平方厘米?

- 47 -

数学奥数培训资料 箭金学堂

课后作业

思考题

- 48 -

数学奥数培训资料 将心注入 梦想可及

第16讲 组合图形面积(一)

一、知识要点

组合图形是由两个或两个以上的简单的几何图形组合而成的。组合的形式分为两种:一是拼合组合,二是重叠组合。由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。要正确解答组合图形的面积,应该注意以下几点:

1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;

2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的; 3.适当采用增加辅助线等方法帮助解题;

4,采用割、补、分解、代换等方法,可将复杂问题变得简单。 二、精讲精练 【例题1】 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?

【思路导航】 由于此三角形中只知道最长的边是12厘米,所以,不能用三角形的面积公式来计算它的面积。我们可以假设有4个这样的三角形,且拼成了下图正方形。显然,这个正方形的面积是12×12.那么,一个三角形的面积就是12×12÷4=36平方厘米。

练习1:1.求四边形ABCD的面积。(单位:厘米)

2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

3.有一个梯形,它的上底是5厘米,下底7厘米。如果只把上底增加3厘米,那么面积就增加4.5平方厘米。求原来梯形的面积。

【例题2】 正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。求中间长方形的面积。

【思路导航】图中的两个小三角形平移后可拼得一个小正方形,两个大三角形平移后可拼得一个大正方形。这两个正方形的边长分别是12÷(1+2)=4(厘米)和4×2=8(厘米)。中间长方形的面积只要用总面积减去这两个拼起来的正方形的面积就可以得到。即:12×12-(4×4+8×8)=64(平方厘米)

练习2:

1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。

2.正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。

3.求下图(上右图)长方形ABCD的面积(单位:厘米)。

- 49 -

数学奥数培训资料 箭金学堂

【例题3】 四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。三角形CDH的面积是多少平方厘米?

【思路导航】设大正方形的边长是a,小正方形的边长是b。

(1)梯形EFAD的面积是(a+b)×b÷2.三角形EFC的面积也是(a+b)×b÷2。所以,两者的面积相等。

(2)因为三角形AFH的面积=梯形EFAD的面积-梯形EFHD的面积,而三角形CDH的面积=三角形EFC的面积-梯形EFHD的面积,所以,三角形CDH的面积与三角形AFH的面积相等,也是7平方厘米。

练习3:

1.图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。

2.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。(单位:厘米) 3.下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?

【例题4】 下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?

【思路导航】要求梯形的面积,关键是要求出上底FD的长度。连接FC后就能得到一个三角形EFC,用三角形EBC的面积减去三角形FBC的面积就

能得到三角形EFC的面积:8×20÷2-8×8÷2=48平方厘米。FD=48×2÷20=4.8厘米,所求梯形的面积就是(4.8+8)×8÷2=51.2平方厘米。

练习4:

1.如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。

2.在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)

3.图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。求平行四边形的面积。

【例题5】 图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。

【思路导航】因为三角形EFD的面积比三角形ABF的面积大6平方厘米,所以,三角形BCE的面积比长方形ABCD的面积大6平方厘米。三角形BCE的面积是6×4+6=30平方厘米,EC的长则是30×2÷6=10厘米。因此,ED的长是10-4=6厘米。

练习5:

- 50 -

小学奥数举一反三(五年级完整版)

数学奥数培训资料箭金学堂第15讲长方体和正方体(三)一、知识要点解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的
推荐度:
点击下载文档文档为doc格式
2dbwn9fhvy570pk9t1ue
领取福利

微信扫码领取福利

微信扫码分享