关于多重球壳结构的磁标势解法的转移矩阵方法
何益鑫 0519016 2008-4-28
一、建立多重球壳结构的磁标势解法的转移矩阵方法
如图所示,该球由一层一层不同磁导率介质同心球壳组成,各层磁导率及半径如图。试以此
建立多重球壳结构的磁标势解法的转移矩阵方法。
1 2 3 R12 R23 .。。。
分析求解:
对所有区域都有:?2?i?0
现在只考虑1、2交界处的情况,其它交界面完全类似。1、2交界处的边界条件为:
?1??2, ?1 ??1????22, ?r?r解题经验告诉我们只需取如下试解:
?i?aircos??bicos?, r2具体以1、2交界面上的边界条件代入可得:
a1rcos??b1b2cos??arcos??cos?, 222R12R12??2b1?2b2??1?a1?3???2?a2?3?,
R12?R12???解此方程组可得:
???1?2??a2?1??2????b?2?3???1?3??1???R122???由此关系可以递推得到:
??1???1????2?32???a1?R12???
??b1???1?21??2????n?1n?1?2?a?n??1???n???????bn??3????n?1?3??1??Rn?1,n?n?????n?1????1??????2?3n???2?1Rn?1,n?...??2????????1?2n?1???1?1?R31,2?n????2???1???1????2?32???a1?R1,2???
??b1???1?21??2?同时根据最外介质空间,及最内介质空间的特殊边界条件,即:a1??H0,bn?0。
只要知道所有的介质磁导率和半径,就可以解出所有介质层的磁标势,进而求得磁场。
特别的,对外层空间有:
?1?a1rcos??b1cos?,r23B0?rrB? b1?0??B???1??1?B0??35rr?B0?????二、求解下图所示的问题
半径为R的磁介质球(磁导率为?2)外面包一层另外的磁介质(磁导率为?1),总的双层球的半径为R',将这样一个体系放置于第三种磁介质(磁导率为?)中,施加均匀磁场,问体系的有效偶极子大小等于多少?调整?的大小,问什么条件下体系的有效偶极矩消失?
分析与解:
由上面推导的转移矩阵法直接可得:
H0?R??R'?????12?2??a0??1???0??????b?0??3????1?'3??1???R0?????1????1??????2?'30???2?2??R?1????????1?21???1?2?R3?0????1???2???1????2?31???a2???? R??b2???1?22??1?边界条件为:a0??H0,b2?0
???1????1????2??2??1???0???2??2?2??H0??1??1?a?0R'3????????2???b??3????0?321?R????1?'3?1???????1?21??????1???R??00?????1??10???2???2?2?1??2??1021? ????R'3??3?a21??R3?????1??R'31?2???21???1010???1??10??1?2?10?R3???1???2??21??2??10??2?????a2R'3?3???2??1??R'3?1??3?1?2?R??????????21102110??2球壳外的场是均匀场和偶极子场的叠加,磁偶极矩的大小即是4?b0,要是有效磁偶极子为0,则必是b0为0。由此可得各组量所应满足的关系是:
?2??21??1??10?R'3??1??21??1?2?10?R3?01??21??1?2?10?3?'3?R??R
?2??21??1??10?????2???0?2?1?R3?R'3??1?2?1??2???0??1?
关于多重球结构的磁标势解法的转移矩阵方法



