小学奥数基础教程(四年级) - 31 -
3.在下列各算式中,不同的汉字代表不同的数字相同的汉字代表相同的数字。求出下列各式:
4.在下列各算式中,相同的字母代表相同的数字,不同的字母代表不同的数字。这些算式中各字母分别代表什么数字?
第11讲 归一问题与归总问题
在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。用这种解题思路解答的应用题,称为归一问题。所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。
例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)
分析:以一根钢轨的重量为单一量。 (1)一根钢轨重多少千克? 1900÷4=475(千克)。
(2)95000千克能制造多少根钢轨? 95000÷475=200(根)。 解:95000÷(1900÷4)=200(根)。 答:可以制造200根钢轨。
例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?
分析:以1头奶牛1天产的牛奶为单一量。 (1)1头奶牛1天产奶多少千克?
小学奥数基础教程(四年级) - 32 -
630÷5÷7=18(千克)。
(2)8头奶牛15天可产牛奶多少千克? 18×8×15=2160(千克)。
解:(630÷5÷7)×8×15=2160(千克)。 答:可产牛奶2160千克。
例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?
分析与解:以1台磨面机1时磨的面粉为单一量。 (1)1台磨面机1时磨面粉多少千克? 2400÷3÷2.5=320(千克)。
(2)8台磨面机磨25600千克面粉需要多少小时? 25600÷320÷8=10(时)。 综合列式为
25600÷(2400÷3÷2.5)÷8=10(时)。
例4 4辆大卡车运沙土,7趟共运走沙土336吨。现在有沙土420吨,要求5趟运完。问:需要增加同样的卡车多少辆?
分析与解:以1辆卡车1趟运的沙土为单一量。 (1)1辆卡车1趟运沙土多少吨? 336÷4÷7=12(吨)。
(2)5趟运走420吨沙土需卡车多少辆? 420÷12÷5=7(辆)。 (3)需要增加多少辆卡车? 7-4=3(辆)。 综合列式为
420÷(336÷4÷7)÷5-4=3(辆)。
与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。所谓“总量”是指总路程、总产量、工作总量、物品的总价等。
例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成? 分析:(1)工程总量相当于1个人工作多少小时? 15×8=120(时)。
(2)12个人完成这项工程需要多少小时?
小学奥数基础教程(四年级) - 33 -
120÷12=10(时)。 解:15×8÷12=10(时)。 答:12人需10时完成。
例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。若要4时到达,则每小时需要多行多少千米?
分析:从甲地到乙地的路程是一定的,以路程为总量。 (1)从甲地到乙地的路程是多少千米? 60×5=300(千米)。
(2)4时到达,每小时需要行多少千米? 300÷4=75(千米)。 (3)每小时多行多少千米? 75-60=15(千米)。
解:(60×5)÷4——60=15(千米)。 答:每小时需要多行15千米。
例7 修一条公路,原计划60人工作,80天完成。现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成?
分析:(1)修这条公路共需要多少个劳动日(总量)? 60×80=4800(劳动日)。
(2)60人工作20天后,还剩下多少劳动日? 4800-60×20=3600(劳动日)。
(3)剩下的工程增加30人后还需多少天完成? 3600÷(60+30)=40(天)。
解:(60×80-60×20)÷(60+30)=40(天)。 答:再用40天可以完成。 练习11
1.2台拖拉机4时耕地20公顷,照这样速度,5台拖拉机6时可耕地多少公顷? 2.4台织布机5时可以织布2600米,24台织布机几小时才能织布24960米? 3.一种幻灯机,5秒钟可以放映80张片子。问:48秒钟可以放映多少张片子? 4.3台抽水机8时灌溉水田48公顷,照这样的速度,5台同样的抽水机6时可以灌溉水田多小公顷?
5.平整一块土地,原计划8人平整,每天工作7.5时,6天可以完成任务。由于急需播种,要求5天完成,并且增加1人。问:每天要工作几小时?
小学奥数基础教程(四年级) - 34 -
6.食堂管理员去农贸市场买鸡蛋,原计划按每千克3.00元买35千克。结果鸡蛋价格下调了,他用这笔钱多买了2.5千克鸡蛋。问:鸡蛋价格下调后是每千克多少元?
7.锅炉房按照每天4.5吨的用量储备了120天的供暖煤。供暖40天后,由于进行了技术改造,每天能节约0.9吨煤。问:这些煤共可以供暖多少天? 第12讲 年龄问题
年龄问题是一类以“年龄为内容”的数学应用题。
年龄问题的主要特点是:二人年龄的差保持不变,它不随岁月的流逝而改变;二人的年龄随着岁月的变化,将增或减同一个自然数;二人年龄的倍数关系随着年龄的增长而发生变化,年龄增大,倍数变小。
根据题目的条件,我们常将年龄问题化为“差倍问题”、“和差问题”、“和倍问题”进行求解。
例1 儿子今年10岁,5年前母亲的年龄是他的6倍,母亲今年多少岁?
分析与解:儿子今年10岁,5年前的年龄为5岁,那么5年前母亲的年龄为5×6=30(岁),因此母亲今年是 30+5=35(岁)。
例2 今年爸爸48岁,儿子20岁,几年前爸爸的年龄是儿子的5倍?
分析与解:今年爸爸与儿子的年龄差为“48——20”岁,因为二人的年龄差不随时间的变化而改变,所以当爸爸的年龄为儿子的5倍时,两人的年龄差还是这个数,这样就可以用“差倍问题”的解法。当爸爸的年龄是儿子年龄的5倍时,儿子的年龄是 (48——20)÷(5——1)=7(岁)。
由20-7=13(岁),推知13年前爸爸的年龄是儿子年龄的5倍。
例3 兄弟二人的年龄相差5岁,兄3年后的年龄为弟4年前的3倍。问:兄、弟二人今年各多少岁?
分析与解:根据题意,作示意图如下:
由上图可以看出,兄3年后的年龄比弟4年前的年龄大5+3+4=12(岁),由“差倍问题”解得,弟4年前的年龄为(5+3+4)÷(3-1)=6(岁)。由此得到 弟今年6+4=10(岁), 兄今年10+5=15(岁)。
小学奥数基础教程(四年级) - 35 -
例4 今年兄弟二人年龄之和为55岁,哥哥某一年的岁数与弟弟今年的岁数相同,那一年哥哥的岁数恰好是弟弟岁数的2倍,请问哥哥今年多少岁?
分析与解:在哥哥的岁数是弟弟的岁数2倍的那一年,若把弟弟岁数看成一份,那么哥哥的岁数比弟弟多一份,哥哥与弟弟的年龄差是1份。又因为那一年哥哥岁数与今年弟弟岁数相等,所以今年弟弟岁数为2份,今年哥哥岁数为2+1=3(份)(见下页图)。 由“和倍问题”解得,哥哥今年的岁数为 55÷(3+2)×3=33(岁)。
例5 哥哥5年前的年龄与妹妹4年后的年龄相等,哥哥2年后的年龄与妹妹8年后的年龄和为97岁,请问二人今年各多少岁?
分析与解:由“哥哥5年前的年龄与妹妹4年后的年龄相等”可知兄妹二人的年龄差为“4+5”岁。由“哥哥2年后的年龄与妹妹8年后的年龄和为97岁”,可知兄妹二人今年的年龄和为“97——2——8”岁。由“和差问题”解得, 兄[(97——2——8)+(4+5)]÷2=48(岁), 妹[(97——2——8)-(4+5)]÷2=39(岁)。
例6 1994年父亲的年龄是哥哥和弟弟年龄之和的4倍。2000年,父亲的年龄是哥哥和弟弟年龄之和的2倍。问:父亲出生在哪一年?
分析与解:如果用1段线表示兄弟二人1994年的年龄和,则父亲1994年的年龄要用4段线来表示(见下页图)。
父亲在2000年的年龄应是4段线再加6岁,而兄弟二人在2000年的年龄之和是1段线再加2×6=12(岁),它是父亲年龄的一半,也就是2段线再加3岁。由 1段+12岁=2段+3岁,
推知1段是9岁。所以父亲1994年的年龄是9×4=36(岁),他出生于 1994——36=1958(年)。
例7今年父亲的年龄为儿子的年龄的4倍,20年后父亲的年龄为儿子的年龄的2倍。问:父子今年各多少岁?