西安电子科技大学简明微波大作业
2.4各国研究进展
目前全球都已开展5G的研究工作。 中国
2013年10月,我国启动了国家863计划“第五代移动通信系统研究开发”项目,今年投入1.6亿元人民币,在2024年之前,系统地研究5G移动通信体系架构、无线组网、无线传输、新型天线与射频以及新频谱开发与利用等关键技术,完成性能评估及原型系统设计,进行技术试验与测试。
华为打破5G空口数据传输纪录 实测速率超过100GBPS
华为2014年2月22日宣布,在高频段无线5G空口环境下实现了高达115Gbps的峰值传输速率。目前为止,华为已经在全球9个地域建立5G的创新研究中心。
中兴发布5G白皮书 展示下一代移动远景
中兴通讯于2014年2月发布了5G白皮书,其中描述了超大数据流量网络给消费者和企业实现了在广泛的日常生活和工作中可以即时按需接入实时应用和获取信息,将数字世界和物理世界合二为一。 欧洲
欧盟拨款5000万欧元加速5G技术发展2024年推出成熟标准
欧盟委员会副主席Neelie Kroes在移动世界大会(MWC 2013)上宣布,欧盟将拨款5000 万欧元(约合6540 万美元),加速5G 移动技术的发展,计划到2024 年推出成熟的标准。
5G公私合作联盟成立 华为致力于共建全球5G生态圈
欧盟及产业界各方共同推动5GPPP Association (5G公私合作联盟)于2014年世界移动通信上正式宣告成立。5GPPP是欧盟重点投入的5G旗舰研究项目群,总投资近7亿欧元用于基础性研究。
华为作为5GPPP Association成员,5GPPP欧洲技术平台委员会董事会成员,英国5G创新中心(5GIC)创始成员之一,中国5G研究国家项目的发起者之一,积极参与项目的制定,规划和执行。
欧盟与爱立信等5G PPP联盟成员启动全新5G合作项目
欧盟委员会携手“5G公私合作”(5G PPP)联盟于2014年2月推出全新5G基础设施公私合作项目,将深入研究未来十年5G通信基础设施的解决方案、架构、技术以及标准等。5G PPP联盟由爱立信、阿尔卡特朗讯、诺基亚通信、Orange 及卫星运营商SES创立,汇聚了电信业、IT业以及科研院所等多方参与者。
1.2亿美元 英德将合作研究5G通信
西安电子科技大学简明微波大作业
英国首相卡梅伦2014年3月9日在汉诺威表示,英国与德国将加强在第五代移动通信技术(5G)和物联网研究上的合作,并共同推进欧洲电信市场一体化。 爱立信与两家合作伙伴在瑞典建立5G传输实验室
2014年3月,爱立信与瑞典皇家理工学院、瑞典ICT研究机构Acero携手,共同成立了5G传输实验室,三方将采取创新的合作方法,共同推动网络传输基础设施的进一步发展,这也是实现未来5G网络和网络社会的关键一步。
爱立信携手纽约大学无线中心共同加快5G移动技术的研发
爱立信于2014年4月宣布成为纽约大学无线中心(NYU WIRELESS)联合赞助商,双方将携手合作研究开发5G技术。 美国
英特尔推动毫米波无线频段5G研究
2014年3月,在成功主导将60GHz 导入区域网络(LAN)后,英特尔正推动一项研究,以定义在下一代蜂窝系统中采用毫米波无线频段的提案。据介绍,英特尔正与欧洲两大联盟以及三星(Samsung)等厂商合作,共同开发5G毫米波频谱计划。该公司还在中国与韩国等地追踪有关5G 的最新发展。
应对5G通信标准 安捷伦布局高频及天线阵列测试技术 在国际电信联盟(ITU)和欧盟5GPPP全力促成下,5G无线通信标准已初具雏形,将采用高达10~80GHz频段、250MHz带宽,支持六十四根以上天线阵列技术。由于测试测量技术与新技术的诞生息息相关,当前测试测量厂商都在加紧布局高频及天线陈列测试技术,以应对5G通信标准的研发,以促进5G 通信于2024年正式投入商用。 韩国
三星称研发5G通信技术 下载速率可达10GBPS 2013年5月,三星宣布已经成功开发了第5代移动通信(5G)的核心技术,这一技术预计将于2024年开始部署。测试人员用64个天线组,以28GHz频段进行最快达1.056Gbps的速度进行无线传输,最远传输距离可达2公里,其速度几乎是4G的百倍以上。 日本
日本电信商示范5G网络计划 比4G快100倍
2013年10月,日本移动通信运营商NTT DoCoMo在日本高新技术博览会上正式对外公布了其5G网络计划的相关细节。
3.5G性能指标
对于5G需要满足一些什么样的指标,工信部电信研究院选择了体育场、办公室、
西安电子科技大学简明微波大作业
密集住宅区等场景,结合车联网、视频点播等应用进行实例分析。对每一种场景下的不同应用进行分析,发现无线技术成为应用发展的制约因素。要在不同的场景下使用户获得良好的应用体验,需要满足以下指标[4]: (1)5G的传输速率在4G的基础上提高10-100倍,体验 速率能够达到0.1~1Gbps,峰值速率能够达到10Gbps; (2)时延降低到4G的1/10或1/5,达到毫秒级水平;
(3)设备密集度能够达到600万个/平方公里; (4)流量密度能够在20Tbps/平方公里以上; (5)移动性达到500km/h,实现高铁环境下的良好用户体 验。
为了满足上述性能指标的要求,使用户获得良好的业务体验,除了以上的这些指标外,能耗效率、频谱效率及峰值速率等指标也是重要的5G技术指标,需要在5G系统设计时综合考虑。
4.5G关键技术
LTE-A的技术标准主要由3GPP国际标准化组织制定。业界初步认为在3GPP R14阶段(2016年)将启动5G技术的标准研究工作。5G无线关键技术的主要方向包括[3]:
4.1 新型多天线技术
随着无线通信的高速发展,对数据流量的需求越来越大,而可用频谱资源是有限的。因此,提高频谱利用效率显得尤为重要。多天线技术是一种提高网络可靠性和频谱效率的有效手段,目前正被应用于无线通信领域的各个方面,如3G,LTE,LTE-A等,天线数量的增加,可以保证传输的可靠性以及频谱效率。 新型大规模天线技术可以实现比现有的MIMO技术更 加高的空间分辨率,使得多个用户可以利用同一时频资源进行通信,从而在不增加基站密度的情况下大幅度提高频率效率;新型多天线技术可以降低发送功率;可以将波束集中在很窄的范围内,可以降低干扰。总之,新型多天线技术无论在频谱效率、网络可靠性还是能耗方面都具有不可比拟的优势,因此在5G时代会普遍使用。限于多天线技术所占用空间大、系统复杂度提升、对设备的外观设计、系统部署能力都带来了极大挑战,因此未来这方面也是研究热点[5,6]。
西安电子科技大学简明微波大作业
4.2 高频段的使用
对于移动通信系统而言,在3GHz以下的频段可以很好地支持移动性,有良好的覆盖范围,但目前在这一区间的频谱资源十分紧张。而在3GHz以上的频谱资源非常丰富,如果能够有效利用这一区间的频谱资源,将会极大地缓解频谱资源紧张的问题。因此,高频段的使用将会成为未来发展的趋势,高频段具有许多优点,比如:可用带宽非常充足,设备和天线小型化,天线增益较高。不过高频段也存在着一些不足之处,例如:穿透和绕射能力弱,传输距离短,传播特性不佳等,同时高频器件和系统设计成熟度、成本等因素也需要得到解决[7]。
4.3 同时同频全双工
传统的无线通信技术由于其局限性,并不能实现同时同 频的双向通信,这造成了极大的资源浪费,而全双工同时同 频技术可以实现上行链路和下行链路同时利用相同的频率 资源进行双向通信,理论上可以令资源利用率提升一倍。不 过全双工同时同频技术也面临一个技术难题,就是在发送和 接收信号的过程中,由于功率差距非常大,会导致非常严重 的自干扰,因此首要解决的问题就是干扰消除。另外,还存 在着邻小区同频干扰问题,全双工同时同频在多天线的环境 下应用难度会更大,需要深入研究[7]。
4.4终端直通技术(D2D)
传统的蜂窝通信系统的组网方式,是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。随着无线多媒体业务不断增多,传统的以基站为中心的业务提供方式,已无法满足海量用户在不同环境下的业务需求。
D2D技术能够无需借助于基站的帮助实现通信终端之间直接通信,拓展网络连接和接入方式。由于短距离直接通信,信道质量高,能够实现较高的数据速率、较低的时延和较低的功耗;通过广泛分布的终端,能够改善覆盖,实现频谱资源的高效利用;支持更灵活的网络架构和连接方法,提升链路灵活性和网络可靠性。目前,D2D采用广播、组播和单播技术方案,未来将发展其增强技术,包括基于D2D的中继技术、多天线技术和联合编码技术等。[8]。
4.5 密集网络
在未来的5G通信中,无线通信网络正朝着网络多元化、宽带化、综合化、智能
西安电子科技大学简明微波大作业
化的方向演进。随着各种智能终端的普及,数据流量将发生井喷式的增长。未来数据业务将主要分布在室内和热点地区,这使得超密集网络成为了实现未来5G的1000倍流量需求的主要手段之一。超密集网络将能够改善网络覆盖,大幅度提升系统容量,并且对业务进行分流,具有更灵活的网络部署和更高效的频率复用。未来,面向高频段大带宽,将采用更加密集的网络方案,部署高达100个以上小小区/扇区。
与此同时,愈发密集的网络部署,也使得网络拓扑更加复杂,小区间干扰已经成为制约系统容量增长的主要因素,极大地降低了网络能效。干扰消除、小区快速发现、密集小区间协作、基于终端能力提升的移动性增强方案等,都是目前密集网络方面的研究热点。
4.6新型网络架构
目前,LTE接入网采用网络扁平化架构,减小了系统时延,降低了建网成本和维护成本。未来5G可能采用C-RAN接入网架构。C-RAN是基于集中化处理(Centralized Processing),协作式无线电(Collaborative Radio)和实时云计算构架(Real-time Cloud Infrastructure)的绿色无线接入网构架(Clean system)。C-RAN的基本思想是通过充分利用低成本高速光传输网络,直接在远端天线和集中化的中心节点间传送无线信号,以构建覆盖上百个基站服务区域,甚至上百平方公里的无线接入系统。C-RAN架构适于采用协同技术,能够减小干扰,降低功耗,提升频谱效率,同时便于实现动态使用的智能化组网,集中处理有利于降低成本,便于维护,减少运营支出。目前,研究的内容包括C-RAN的架构和功能,如集中控制,基带池RRU接口定义,基于C-RAN的更紧密协作,如基站簇、虚拟小区等。
5.结束语