精品文档在线编辑
2013北京高考理科数学试题
第一部分 (选择题 共40分)
一、选择题共8小题。每小题5分,共40分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}
2.在复平面内,复数(2-i)2对应的点位于( ) A.第一象限 B. 第二象限 C.第三象限 D. 第四象限
3.“φ=π”是“曲线y=sin(2x+φ)过坐标原点的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.执行如图所示的程序框图,输出的S值为 A.1 B.
23 C.1321 D.610987 5.函数f(x)的图象向右平移一个单位长度,所得图象与
y=ex关于y轴对称,则f(x)= A.ex?1 B. ex?1 C. e?x?1 D. e?x?1
6.若双曲线x2y2a2?b2?1的离心率为3,则其渐近线方程为
A.y=±2x B.y=?2x C.y??122x D.y??2x 7.直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于
A.
43 B.2 C.81623 D.3
?2x?y?1?0,8.设关于x,y的不等式组??x?m?0,表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,求得m的
??y?m?0取值范围是
更多好内容为您奉上
精品文档在线编辑
A.????,?4???? ??1??3?B. ???,3?? C.
???,?2?? D.
????,?5??3?3??
第二部分(非选择题 共110分)
二、填空题共6题,每小题5分,共30分. 9.在极坐标系中,点(2,
?6)到直线ρsinθ=2的距离等于 10.若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q= ;前n项和Sn= .
11.如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,PA=3,PD9DB?16,
则PD= ,AB= .
12.将序号分别为1,
2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 .
13.向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R) ,则
??= 14.如图,在棱长为2的正方体
ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为 .
三、解答题共6小题,共80分。解答应写出文字说明,演2013年普通高等学校招生统一考试算步骤或证明过程 15. (本小题共13分)
在△ABC中,a=3,b=26,∠B=2∠A. (I)求cosA的值, (II)求c的值
16.( 本小题共13分)
下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天
更多好内容为您奉上
精品文档在线编辑
(Ⅰ)求此人到达当日空气重度污染的概率
(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 17. (本小题共14分)
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5. (Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BCBD1存在点D,使得AD⊥A1B,并求BC的值. 1
18. (本小题共13分)
设l为曲线C:y?lnxx在点(1,0)处的切线. (I)求l的方程;
(II)证明:除切点(1,0)之外,曲线C在直线l的下方
19. (本小题共14分)
已知A、B、C是椭圆W:x2?y24?1上的三个点,O是坐标原点. (I)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由. 20. (本小题共13分)
已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an?1,an?2…的最小值记为Bn,dn=An-Bn
(I)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,an?4?an),写出d1,d2,d3,d4的值;
(II)设d为非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}为公差为d的等差数列; (III)证明:若a1=2,dn=1(n=1,2,3…),则{an}的项只能是1或2,且有无穷多项为1
更多好内容为您奉上
精品文档在线编辑
更多好内容为您奉上