好文档 - 专业文书写作范文服务资料分享网站

北师大版九年级数学动点问题题型方法归纳

天下 分享 时间: 加入收藏 我要投稿 点赞

动点问题题型方法归纳

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)

动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点

3x?6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时4到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A、B两点的坐标;

(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;

48(3)当S?时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

51、(2009年齐齐哈尔市)直线y??提示:第(2)问按点P到拐点B所有时间分段分类;

第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。然后画出各类的图形,根据图形性质求顶点坐标。

y B P O Q A x 2、(2009年衡阳市)

C C C

F F E A B A A B D O E O B O

图(1) 图(2) 图(3)

如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60o. (1)求⊙O的直径;

(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;

(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0?t?2),连结EF,当t为何值时,△BEF为直角三角形.

注意:第(3)问按直角位置分类讨论

3、(2009重庆綦江)如图,已知抛物线y?a(x?1)2?33(a?0)经过点A(?2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC. (1)求该抛物线的解析式;

(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?

(3)若OC?OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长. 注意:发现并充分运用特殊角∠DAB=60°

当△OPQ面积最大时,四边形BCPQ的面积最小。

M y

D C

P

A

Q O B x

二、 特殊四边形边上动点 4、(2009年吉林省)如图所示,菱形ABCD的边长为6厘米,?B?60°.从初始时刻开始,点P、Q同时从

A点出发,点P以1厘米/秒的速度沿A?C?B的方向运动,点Q以2厘米/秒的速度沿A?B?C?D的方向运动,当点Q运动到D点时,设P、△APQ与△ABCQ两点同时停止运动,Q运动的时间为x秒时,P、重叠部分的面积为y平方厘米(这里规定:点和线段是面积为O的三角形),解答下列问题: ....

(1)点P、Q从出发到相遇所用时间是 秒;

(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是 秒; (3)求y与x之间的函数关系式.

提示:第(3)问按点Q到拐点时间B、C所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。

C D

P

B

A Q

5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(?3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S?0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

注意:第(2)问按点P到拐点B所用时间分段分类;

第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运动过程中, ∠MPB=∠ABM的两种情况,求出t值。 y y 利用OB⊥AC,再求OP与AC夹角正切值. A H B A H B

M M

x x C O C O 图(1)

图(2)

6、(2009年温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),C(0,2).动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒. (1)求∠ABC的度数;

(2)当t为何值时,AB∥DF; (3)设四边形AEFD的面积为S. ①求S关于t的函数关系式;

②若一抛物线y=x+mx经过动点E,当S<23时,求m的取值范围(写出答案即可). 注意:发现特殊性,DE∥OA 7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且

∠AOC=60°,点B的坐标是(0,83),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同

2

时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动,设t(0?t?8)秒后,直线PQ交OB于点D.

(1)求∠AOB的度数及线段OA的长;

(2)求经过A,B,C三点的抛物线的解析式;

y 4(3)当a?3,OD?B 3时,求t的值及此时直线PQ的解析式;

3(4)当a为何值时,以O,P,Q,D为顶点的三角形与?OAB相似?当a 为何值时,以O,P,Q,D为顶点的三角形与?OAB不相似?P 请给出你的结论,并加以证明.

C D A Q x O

8、(08黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,,0)B(810),,C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.

(1)求直线BC的解析式;

2? 7(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;

(4)当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?请求出此时动点P的坐标;若不能,请说明理由.

(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的 y C O

B D y C D B P A x O A (此题备用)

x 9、(09年黄冈市)如图,在平面直角坐标系xoy中,抛物线y?124x?x?10与x轴的交点为点A,与y轴的交点189为点B. 过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)

(1)求A,B,C三点的坐标和抛物线的顶点的坐标;

(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程; (3)当0<t<

9时,△PQF的面积是否总为定值?若是,求出此定值, 2若不是,请说明理由;

(4)当t为何值时,△PQF为等腰三角形?请写出解答过程. 提示:第(3)问用相似比的代换,

得PF=OA(定值)。

第(4)问按哪两边相等分类讨论 ①PQ=PF,②PQ=FQ,③QF=PF.

三、 直线上动点

8、(2009年湖南长沙)如图,二次函数y?ax?bx?c(a?0)的图象与x轴交于A、B两点,与y轴相交

2于点C.连结AC、BC,A0)、C(0,3),且当x??4和x?2时二次函数的函、C两点的坐标分别为A(?3,数值y相等.

(1)求实数a,b,c的值;

(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B 点恰好落在AC边上的P处,求t的值及点P的坐标;

(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由. 提示:第(2)问发现

特殊角∠CAB=30°,∠CBA=60° 特殊图形四边形BNPM为菱形;

第(3)问注意到△ABC为直角三角形后,按直角位置对应分类; 先画出与△ABC相似的△BNQ ,再判断是否在对称轴上。

9、(2009眉山)如图,已知直线y?y C P N A M O B x 11x?1与y轴交于点A,与x轴交于点D,抛物线y?x2?bx?c与直线22交于A、E两点,与x轴交于B、C两点,且B点坐标为 (1,0)。

⑴求该抛物线的解析式;

⑵动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P。

⑶在抛物线的对称轴上找一点M,使|AM?MC|的值最大,求出点M的坐标。

提示:第(2)问按直角位置分类讨论后画出图形----①P为直角顶点AE为斜边时,以AE为直径画圆与x轴交点即为所求点P,②A为直角顶点时,过点A作AE垂线交x轴于点P,③E为直角顶点时,作法同②;

第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。 10、(2009年兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度; (2)求正方形边长及顶点C的坐标;

(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.

北师大版九年级数学动点问题题型方法归纳

动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单
推荐度:
点击下载文档文档为doc格式
2bmjm73l833j4lf875oe
领取福利

微信扫码领取福利

微信扫码分享