好文档 - 专业文书写作范文服务资料分享网站

高考理数考前20天终极冲刺攻略: 数列 含答案解析

天下 分享 时间: 加入收藏 我要投稿 点赞

核心考点解读——数列

考纲解读里的I,II的含义如下:

I:对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用,即了解和认识.

II:对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用,即理解和应用.(以下同)

数列的概念及其通项公式(I) 等差数列的通项及其前n项和(II) 等比数列的通项及其前n项和(II) 等差数列、等比数列的性质(II) 数列求和及其求和方法(II) 数列的应用(II) 1.从考查的题型来看,涉及本知识点的题目主要以选择题、填空题的形式考查,利用等 差数列的概念判断性质真假,利用等差数列的通项公式、前n项和公式进行相关的求值计算;利用等比数列的概念判断性质真假,利用等比数列的通项公式、前n项和公式进行相关的求值计算等. 2.从考查内容来看,主要考查数列的递推关系、等差数列、等比数列的相关运算,重点在于掌握等差数列和等比数列的通项公式和前n项和公式,能够利用“a1,d,n,an,Sn”和“a1,q,n,an,Sn”这五个量进行相互转化,达到“知三求二”的目的. 3.从考查热点来看,数列计算是高考命题的热点,要注意通项公式与求和公式的正确使用及利用数列的性质简化运算. 1.数列的概念及表示 (1)数列可以看作特殊的函数,数列的每一项叫做数列的项,排在第一位的数是数列的第一项,也叫首项.数列的一般形式可以写为?an?:a1,a2,也叫通项公式. 数列的表示方法: *①通项公式:an?f(n),n?N; ,an,.an:数列的第n项,②递推公式:如n?1时,an?pan?1?q型. (2)求数列通项公式的方法 ①观察法:已知数列的前几项,可观察数列这几项的各部分与n的关系,最后用不完全归纳得到通项公式.

?S1,n?1,②前n项和Sn与通项an之间的关系:an??能够利用前n项和Sn的S?S,n?1,n?1?n关系式求得an,此时要注意n?1;也能够利用an表示前n项和Sn. ③利用递推公式:形如an?1?an?f(n)型的可采用累加法;形如an?1?an?f(n)型的可采用累乘法;形如an?pan?1?q型,当p?1,q?0,1时,通常可以构造(an?x)?p(an?1?x)的形式,利用等比数列的通项公式得到an?x的通项公式,然后求解an. 2.等差数列的概念与证明 (1)熟练掌握等差数列的定义与定义式:n?1,an?an?1?d.要注意,数列要从第二项开始,然后是每一项与前一项的差是同一个常数,这个常数就是公差.由此要明确,一个数列能够构成等差数列,至少需要三项. (2)若三个数a,b,c构成等差数列,则称b为a,c的等差中项,记作b?a?c或22b?a?c. (3)等差数列的证明,通常根据题中所给的递推关系式,利用定义进行证明,若n?1时,推理得到an?an?1的差为常数,并能够确定这个常数,则可判定数列为等差数列. 3.等差数列的通项公式及性质 (1)等差数列的通项公式:an?a1?(n?1)d?am?(n?m)d?dn?p(p?a1?d).知道等差数列的通项公式的推理方法是根据定义式叠加而得,了解等差数列与一次函数之间的联系与区别. (2)等差数列的性质:若m?n?p?q,则am?an?ap?aq.等差数列的性质反映了项与项数之间对称的等量关系,由此得到等差数列前n项和的推导方法——倒序相加法. 4.等差数列的前n项和 (1)等差数列的前n项和:Sn?na1?n(a1?an)d2n(n?1)dd??n?kn(k?a1?).能够利2222用首项与公差表示等差数列的前n项和,了解二次函数与等差数列前n项和的关系. (2)掌握等差数列前n项和的性质:Sn,S2n?Sn,S3n?S2n,差数列. 成等差数列,??Sn??也是等?n?

5.等比数列的概念与证明 (1)熟练掌握等比数列的定义与定义式:n?1,an?q(q?0).要注意,数列要从第二an?1项开始,然后是每一项与前一项的比值是同一个常数,这个常数就是公比.由此要明确,一个数列能够构成等比数列,至少需要三项. (2)若三个数a,b,c构成等比数列,则称b为a,c的等比中项,记作b??ac 或b?ac. (3)等比数列的证明,通常根据题中所给的递推关系式,利用定义进行证明,若n?1时,推理得到2an的比值为常数,并能够确定这个常数,则可判定数列为等比数列. an?16.等比数列的通项公式及其性质 (1)等比数列的通项公式:an?a1?qn?1?am?qn?m?a?qn(a?a1).知道等比数列通项公q式的推理方法是根据定义式叠乘而得,了解等比数列与指数函数之间的联系与区别. (2)等比数列的性质:若m?n?p?q,则am?an?ap?aq. 7.等比数列的前n项和 ?na1,q?1,?(1)等比数列的前n项和:Sn??a1(1?qn)a1?an?q能够利用首项与公比表示?,q?1.?1?q1?q?等比数列的前n项和,了解指数函数与等比数列前n项和公式之间的关系.掌握等比数列前n项和公式的推导方法——错位相减法. Sm?n?Sn?qnSm?Sm?qmSn;(2)掌握等比数列前n项和的性质:当q??1或q??1且k为奇数时,Sk,S2k?Sk,S3k?S2k,8.等差数列、等比数列的混合计算 成等比数列. (1)等差数列中利用某项确定,另有不连续三项按某种条件构成等比数列,由此计算得到等差数列的首项与公差,并求通项与前n项和. (2)等比数列中利用某项确定,另有不连续三项按某种条件构成等差数列,由此计算得到等比数列的首项与公比,并求通项与前n项和. (3)注意在数列计算中基本量a1,d,q,n的应用. 9.等差数列前n项和的最大(小)项 利用等差数列的前n 项和公式,结合二次函数的求最值的特点及相应的图象,利用函

数的单调性判断最值. 10.数列求和 (1)等差数列、等比数列的前n项和Sn ①等差数列的前n项和Sn?na1?n(a1?an)d2n(n?1)dd??n?kn(k?a1?); 2222?na1,q?1,?②等比数列的前n项和Sn??a1(1?qn)a1?an?q ?1?q?1?q,q?1.?(2)分组求和法求数列的前n项和 分组求和法可以解决形如cn?an?bn类数列的求和问题,其基本步骤是首先确定通项公式,然后对通项公式进行拆分,拆成几个可以直接求和的数列(最好是等差数列或等比数列),再分别求和后相加即可得到原数列的和. (3)裂项相消法求数列的前n项和 裂项相消法的基本思想是把数列的通项an拆分成an?bn?1?bn等的形式,从而在求和时起到逐项相消的目的.比较常见的类型有: ①111111?(?),②?(n?k?n), n(n?k)knn?kn?k?nk1111?(?)等. (2n?1)(2n?1)22n?12n?1③采用裂项相消法求数列的前n项和时,要注意系数的问题以及求和逐项相消后前后剩余的项的问题. (4)错位相减法求数列的前n项和 错位相减法主要应用于求解由等差数列?an?与等比数列?bn?的对应项之积组成的数列?cn?的求和问题,即求cn?an?bn的和.其一般步骤为先识别数列的通项公式是否为等差数列与等比数列对应项之积构成的数列,并确定等比数列的公比,然后写出前n项和Sn的表达式,并在等式两边同时乘以公比或公比的倒数,得到另一个式子,再对两式作差,最后根据差式中间的n?1项构成的等比数列求和,合并同类项即得所求的前n项和. 错位相减法的计算过程较为复杂,对计算的能力要求比较高,同时考查的力度也相对较高,应注意加强训练.

1.(2017高考新课标I,理4)记Sn为等差数列{an}的前n项和.若a4?a5?24,S6?48,则{an}的公差为

A.1 C.4

B.2 D.8

2.(2017高考新课标Ⅲ,理9)等差数列?an?的首项为1,公差不为0.若a2,a3,a6成等比数列,则?an?前6项的和为 A.?24 C.3

B.?3

D.8

3.(2017高考新课标II,理15)等差数列?an?的前n项和为Sn,a3?3,S4?10,则4.(2016高考新课标I,理3)已知等差数列{an}前9项的和为27,a10=8,则a100=

A.100 B.99 C.98 D.97

1?____________. ?Sk?1kn,S7?28.记bn=?lgan?,其中?x?表示5.(2016高考新课标II,理17)Sn为等差数列?an?的前n项和,且a1=1不超过x的最大整数,如?0.9?=0,?lg99?=1. (Ⅰ)求b1 ,b11 ,b101; (Ⅱ)求数列?bn?的前1000项和.

6.(2016高考新课标III,理17)已知数列{an}的前n项和Sn?1??an,其中??0.

(I)证明{an}是等比数列,并求其通项公式; (II)若S5?31 ,求?. 327. (2015高考新课标II,理16)设Sn是数列?an?的前n项和,且a1??1,an?1?SnSn?1,则Sn?________.

28.(2015高考新课标I,理17)Sn为数列{an}的前n项和.已知an>0,an?2an=4Sn?3.

(I)求{an}的通项公式; (II)设bn?1 ,求数列{bn}的前n项和. anan?19.(2015高考新课标II,理4)已知等比数列?an?满足a1=3,a1?a3?a5 =21,则a3?a5?a7?

A.21

B.42

C.63

D.84

1.在公差为2的等差数列

中,

,则

高考理数考前20天终极冲刺攻略: 数列 含答案解析

核心考点解读——数列考纲解读里的I,II的含义如下:I:对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用,即了解和认识.II:对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用,即理解和应用.(以下同)数列的概念及其通项公式(I)等
推荐度:
点击下载文档文档为doc格式
2bh4u7frql4i6jo0x1m776vac3ljxx012f8
领取福利

微信扫码领取福利

微信扫码分享