arcsinxu1?lim??1;
x?0u?0sinusinuxlimu?0u14.令arctanx?u,则x?tanu,当x?0,u?0,
arctanxuu1lim?lim?limgcosu?limglimcosu?1. x?0u?0u?0u?0u?0sinuxtanusinuulim习题2-6
1. 证明: 若当x→x0时,?(x)→0,β(x)→0,且?(x)≠0,则当x→x0时,?(x)~β(x)的充要条件是limx?x0?(x)??(x)=0.
?(x)证:先证充分性. 若limx?x0?(x)??(x)?(x))=0, =0,则lim(1?x?x0?(x)?(x)即1?limx?x0?(x)?(x)?0,即lim?1.
x?x?(x)?(x)0也即limx?x0?(x)?1,所以当x?x0时,?(x):?(x). ?(x) 再证必要性:
若当x?x0时,?(x):?(x),则limx?x0?(x)?1, ?(x)所以limx?x0?(x)??(x)?(x)?(x)1)=1?lim?1??1?1?0. =lim(1?x?xx?x?(x)0?(x)?(x)?(x)limx?x?(x)00 综上所述,当x→x0时,?(x)~β(x)的充要条件是
x?x0lim?(x)??(x)=0.
?(x)2. 若β(x)≠0,limβ(x)=0且limx?x0x?x0?(x)存在,证明lim?(x)=0.
x?x0?(x)证:lim?(x)?limx?x0x?x0?(x)?(x)?(x)g?(x)?limglim?(x)?limg0?0
x?x?(x)x?xx?x?(x)?(x)000即 lim?(x)?0.
x?x03. 证明: 若当x→0时,f(x)=o(xa),g(x)=o(xb),则f(x)·g(x)=o(xa?b),其中a,b都大于
0,并由此判断当x→0时,tanx-sinx是x的几阶无穷小量.
证: ∵当x→0时, f(x)=o(xa),g(x)=o(xb)
f(x)g(x)?A(A?0),lim?B(B?0)
x?0xax?0xbf(x)?g(x)f(x)g(x)f(x)g(x)于是: lim?lim??lim?lim?AB?0 a?bababx?0x?0x?0x?0xxxxx∴lim∴当x→0时, f(x)?g(x)?O(xa?b),
∵tanx?sinx?tanx(1?cosx)
而当x→0时, tanx?O(x),1?cosx?O(x), 由前面所证的结论知, tanx(1?cosx)?O(x), 所以,当x→0时,tanx?sinx是x的3阶无穷小量. 4. 利用等价无穷小量求下列极限: (1) limx?032sinax1?coskx (b≠0); (2) lim; 2x?0tanbxxln(1?x); (4) limx?01?x?1(3) limx?02?1?cosx1?x?12;
eax?ebxarctanx(5) lim; (6) lim (a≠b);
x?0arcsinxx?0sinax?sinbxlncos2xf(x)?3; (8) 设lim=100,求limf(x). 2x?0lncos3xx?0x?0xsinaxaxa解 (1)lim?lim?.
x?0tanbxx?0bxbf(x)?32limx?0知必有lim[f(x)?3]?0, (8)由lim,及?1002x?0x?0x?0x(7) lim即 lim[f(x)?3]?limf(x)?3?0,
x?0x?0所以 limf(x)?3.
x?0习题2-7
1.研究下列函数的连续性,并画出函数的图形:
,?x3?1,0?x?1,?x,?1?x?1(1) f(x)= ? (2) f(x)=?
?1,x??1或x?1.?3?x,1?x?2;f(x)?lim(x?1)?1?f(0) 解: (1) Qlim??x?0x?03∴ f(x)在x=0处右连续, 又Qlimf(x)?lim(3?x)?2 ??x?1x?1∴ f(x)在x=1处连续.
又 limf(x)?lim(3?x)?1?f(2) ??x?2x?2∴ f(x)在x=2处连续.
又f(x)在(0,1),(1,2)显然连续,综上所述, f(x)在[0,2]上连续.图形如下:
图2-1 (2) Qlimf(x)?limx?1 ??x?1x?1∴ f(x)在x=1处连续.
又lim?f(x)?lim?1?1
x??1x??1故lim?f(x)?lim?f(x)
x??1x??1∴ f(x)在x=-1处间断, x=-1是跳跃间断点. 又f(x)在(??,?1),(?1,1),(1,??)显然连续.
综上所述函数f(x)在x=-1处间断,在(??,?1),(?1,??)上连续.图形如下:
图2-2 2. 说明函数f(x)在点x0处有定义、有极限、连续这三个概念有什么不同?又有什么联系? 略.
3.函数在其第二类间断点处的左、右极限是否一定均不存在?试举例说明. 解:函数在其第二类间断点处的左、右极限不一定均不存在.
?x?例如f(x)??1??xx?0x?0f(x)?limx?0即在,x?0是其的一个第二类间断点,但lim??x?0x?0f(x)?limx?0处左极限存在,而lim??x?0x?01???,即在x?0处右极限不存在. x4.求下列函数的间断点,并说明间断点的类型:
x2?1sinx?x(1) f(x)= 2; (2) f(x)=;
x?3x?2sinx(3) f(x)= 1?x(5) f(x)= xsin2??1x; (4) f(x)=
x?2; x2?41. x解: (1)由x?3x?2?0得x=-1, x=-2 ∴ x=-1是可去间断点,x=-2是无穷间断点. (2)由sinx=0得x?kπ,k为整数. ∴ x=0是跳跃间断点. (4)由x2-4=0得x=2,x=-2.
∴ x=2是无穷间断点,x=-2是可去间断点. (5) Qlimf(x)?limxsinx?0x?01?0,f(x)在x=0无定义 x故x=0是f(x)的可去间断点.
?ex,x?0,5.适当选择a值,使函数f(x)= ?在点x=0处连续.
?a?x,x?0解: ∵f(0)=a,
要f(x)在x=0处连续,必须limf(x)?limf(x)?f(0). ??x?0x?0即a=1.
ax?a?x6.设f(x)= limx,讨论f(x)的连续性.
x???a?a?x※
??1x?0ax?a?xa2x?1?解: f(x)?limx?lim2x??1x?0?sgn(x)
a???a?a?xa???a?1??0x?0所以, f(x)在(??,0)U(0,??)上连续,x=0为跳跃间断点. 7. 求下列极限: (1) limx?22x; (2) lim3?2x?x2; 2x?0x?x?2x?12(3) limln(x-1); (4) limarcsin1?x2;
x?2(5) lim(lnx)x.
x?e解: (1)limx?22x2?2??1; 22x?x?22?2?2习题2-8
1. 证明方程x5-x4-x2-3x=1至少有一个介于1和2之间的根. 证: 令f(x)?x?x?x?3x?1,则f(x)在[1,2]上连续, 且 f(1)??5?0, f(2)?5?0
由零点存在定理知至少存在一点x0?(1,2),使得f(x0)?0.
542即 x0?x0?x0?3x0?1,
542即方程x?x?x?3x?1至少有一个介于1和2之间的根. 2. 证明方程ln(1+ex)-2x=0至少有一个小于1的正根.
证: 令f(x)?ln(1?e)?2x,则f(x)在(??,??)上连续,因而在[0,1]上连续,
x542且 f(0)?ln(1?e)?2?0?ln2?0
由零点存在定理知至少存在一点x0?(0,1)使得f(x0)?0. 即方程ln(1?e)?2x?0至少有一个小于1的正根.
3. 设f(x)∈C(-∞,+∞),且limf(x)=A, limf(x)=B, A·B<0,试由极限及零点存在定
x???x???※
0x理的几何意义说明至少存在一点x0∈(-∞,+∞),使得f(x0)=0. 证: 由A·B<0知A与B异号,不防设A>0,B<0
由limf(x)?A?0,limf(x)?B?0,及函数极限的保号性知,?X1?0,使当
x???x???x??X1,有f(x)?0,
?X2?0,使当x?X2时,有f(x)?0.
现取x?a??X1,则f(a)?0,
x?b?X2,则f(b)?0,且a?b,
由题设知f(x)在[a,b]上连续,由零点存在定理,至少存在一点x0?(a,b)使f(x0)?0, 即至少存在一点x0?(??,??)使f(x0)?0.
4.设多项式Pn(x)=xn+a1x至少有一实根.
证: QPn(x)?x?1?nn?1+…+an.,利用第3题证明: 当n为奇数时,方程Pn(x)=0
??aa1a2?2?L?nxxxn?? ??limPn(x)?1?0,由极限的保号性知.
x??xnP(x)?X?0,使当x?X时有nn?0,此时Pn(x)与xn同号,因为n为奇数,所以(2X)n与
x(-2X)n异号,于是Pn(?2X)与Pn(2X)异号,以Pn(x)在[?2X,2X]上连续,由零点存在定理,至少存在一点X0?(?2X,2X),使Pn(x0)?0,即Pn(x)?0至少有一实根.