第一章 质点运动学
1 -1 质点作曲线运动,在时刻t 质点的位矢为r,速度为v ,速率为v,t 至(t +Δt)时间内的位移为Δr, 路程为Δs, 位矢大小的变化量为Δr ( 或称Δ|r|),平均速度为v,平均速率为v.
(1) 根据上述情况,则必有( ) (A) |Δr|= Δs = Δr
(B) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= ds ≠ dr (C) |Δr|≠ Δr ≠ Δs,当Δt→0 时有|dr|= dr ≠ ds (D) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= dr = ds (2) 根据上述情况,则必有( )
(A) |v|= v,|v|= v (B) |v|≠v,|v|≠ v (C) |v|= v,|v|≠ v (D) |v|≠v,|v|= v
分析与解 (1) 质点在t 至(t +Δt)时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr|=PP′,而Δr =|r|-|r|表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,则有|dr|=ds,但却不等于dr.故选(B).
(2) 由于|Δr |≠Δs,故但由于|dr|=ds,故
ΔrΔs?,即|v|≠v. ΔtΔtdrds?,即|v|=v.由此可见,应选(C). dtdt1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即
drdrdsdx??dy?(1); (2); (3); (4)??????.
dtdtdt?dt??dt?22下述判断正确的是( )
(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 分析与解
dr表示质点到坐标原点的距离随时间的变化率,在极坐标系dt中叫径向速率.通常用符号vr表示,这是速度矢量在位矢方向上的一个分量;
drds表示速度矢量;在自然坐标系中速度大小可用公式v?计算,在直角坐标
dtdtdx??dy?系中则可由公式v???????求解.故选(D).
?dt??dt?221 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即
(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at. 下述判断正确的是( )
(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的
dv表示切向加速度at,它表示速度大小随时间的变化率,是dtdr加速度矢量沿速度方向的一个分量,起改变速度大小的作用;在极坐标系
dtds中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;
dt分析与解
而
dv表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确dt的.故选(D).
1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变
分析与解 加速度的切向分量at起改变速度大小的作用,而法向分量an
起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).
*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率为v,则小船作( )
(A) 匀加速运动,v?v0 cosθ(B) 匀减速运动,v?v0cosθ (C) 变加速运动,v?v0 cosθ(D) 变减速运动,v?v0cosθ (E) 匀速直线运动,v?v0
分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为
此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为x?l2?h2,其中绳长l 随时间t 而变化.小船速
dldxdl度v??2dt2,式中表示绳长l 随时间的变化率,其大小即为v0,代入
dtdtl?hl整理后为v?v0l2?h2/l?v0,方向沿x 轴负向.由速度表达式,可判断小船作cosθ变加速运动.故选(C).
讨论 有人会将绳子速率v0按x、y 两个方向分解,则小船速度v?v0cosθ,这样做对吗
1 -6 已知质点沿x 轴作直线运动,其运动方程为x?2?6t2?2t3,式中x 的单位为m,t 的单位为 s.求:
(1) 质点在运动开始后 s内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t=4 s时质点的速度和加速度.
分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx
Δx?xt?x0,而在求路程时,就必须注意到质点的大小可直接由运动方程得到:
在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据
dx?0来确定其运动方向改变的时刻tp ,求出0~tp 和tp~t 内的位移dt大小Δx1 、Δx2 ,则t 时间内的路程s??x1??x2,如图所示,至于t = s 时
dxd2x质点速度和加速度可用和2两式计算.
dtdt解 (1) 质点在 s内位移的大小 (2) 由 得知质点的换向时刻为
tp?2s (t=0不合题意)
dx?0 dt则
所以,质点在 s时间间隔内的路程为
(3) t= s时
1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t=0 时,x=0.试根据已知的v-t 图,画出a-t 图以及x -t 图.
分析 根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t 图上是平行于t 轴的直线,由v-t 图中求出各段的斜率,即可作出a-t 图线.又由速度的定义可知,x-t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t 的位置x,采用描数据点的方法,可作出x-t 图.
解 将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为
aAB?vB?vA?20m?s?2 (匀加速直线运动) tB?tAaBC?0 (匀速直线运动)
aCD?vD?vC??10m?s?2 (匀减速直线运动) tD?tC根据上述结果即可作出质点的a-t 图[图(B)].
在匀变速直线运动中,有
由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为
用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作v?20m?s?1的匀速直线运动, 其x -t 图是斜率k=20的一段直线[图(c)].
1 -8 已知质点的运动方程为r?2ti?(2?t2)j,式中r 的单位为m,t 的单位为s.求:
(1) 质点的运动轨迹;
(2) t =0 及t =2s时,质点的位矢;
(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr; *
(4) 2 s 内质点所走过的路程s.
分析 质点的轨迹方程为y =f(x),可由运动方程的两个分量式x(t)和y(t)中消去t 即可得到.对于r、Δr、Δr、Δs 来说,物理含义不同,可根据其定义计算.其中对s的求解用到积分方法,先在轨迹上任取一段微元ds,
则ds?(dx)2?(dy)2,最后用s??ds积分求s.
解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为 这是一个抛物线方程,轨迹如图(a)所示.
(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为
r0?2j , r2?4i?2j
图(a)中的P、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得
其中位移大小Δr?(Δx)2?(Δy)2?5.66m
2222?y2?x0?y0?2.47m 而径向增量Δr?Δr?r2?r0?x2*(4) 如图(B)所示,所求Δs 即为图中PQ段长度,先在其间任意处取AB 微元ds,则ds?(dx)2?(dy)2,由轨道方程可得dy??xdx,代入ds,则2s内路程为
1 -9 质点的运动方程为
式中x,y 的单位为m,t 的单位为s.
试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.
分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.
解 (1) 速度的分量式为
当t =0 时, vox =-10 m·s-1 , voy =15 m·s-1 ,则初速度大小为 设vo与x 轴的夹角为α,则
α=123°41′
(2) 加速度的分量式为
dvydvx?2??40m?s?2 ax??60m?s , ay?dtdt12则加速度的大小为
设a 与x 轴的夹角为β,则
β=-33°41′(或326°19′)
1 -10 一升降机以加速度 m·s-2上升,当上升速度为 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距 m.计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.
分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2